【刷题】贪心——区间问题:区间分组

模型

给定N个闭区间 [ a i , b i ] [a_i, b_i] [ai,bi],将区间分成若干组,使每组内的区间两两(包括端点)没有交集。求组数的最小值。

输入N,表示区间数
接下去N行,每行包括 a i , b i a_i, b_i ai​,bi​,表示一个区间的两个端点。

1 ≤ N ≤ 105 1≤N≤105 1N105
− 1 0 9 ≤ a i ≤ b i ≤ 1 0 9 -10^9\leq a_i \leq b_i \leq 10^9 109aibi109

输出组数的最小值


算法

将区间按端点从小到大排序,依次枚举每个区间。

  • 判断能否将其放到某个现有的组中(如果组中所有区间的最大的右端点( m a x r max_r maxr) < < <这个区间的左端点,则能)
    • 不存在这样的组,开一个新组,把这个区间放进去
    • 存在这样的组,将这个区间放入组中,更新 m a x r max_r maxr

判断能否将其放到某个现有的组中(如果组中所有区间的最大的右端点( m a x r max_r maxr) < < <这个区间的左端点,则能),这一步需要用小根堆,把所有组最小的右端点最大值放在堆顶,这样能防止遍历所有组超时。


正确性

设算法得到的组的个数是A,最优解得到组的个数是B

A ≥ B A\geq B AB
因为这种选法每个组内每个区间都没有交集,因此A是合法解,最优解显然不超过合法解。

A ≤ B A\leq B AB
观察新开第A组的时刻,要新开第A组,则前A-1组内都存在区间和当前区间冲突。也就是这些区间都包含当前区间的左端点,因此这些区间都是两两冲突的。

因此这些两两冲突的区间只能各自在自己的组里,不能在同一组中,所以任何可行的方案都至少要开A组,最优解也是一种可行方案,因此 A ≤ B A\leq B AB


代码实现

在这里插入图片描述
题目链接

#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;

typedef pair<int, int> PII;
const int N = 50005;

struct Milk{
	int l, r, num;
	bool operator< (const Milk &W)const {
		return l < W.l;
	}
}milks[N];
int n, ans, res[N];
priority_queue<PII, vector<PII>, greater<PII> > group;
int main() {
	scanf("%d", &n);
	for (int i = 0; i < n; i ++ ) {
		scanf("%d%d", &milks[i].l, &milks[i].r);
		milks[i].num = i;
	}
	sort(milks, milks + n);
	for (int i = 0; i < n; i ++ ) {
		if (group.size() && group.top().first < milks[i].l) {
			int num = group.top().second;
			group.pop();
			group.push({milks[i].r, num});
			res[milks[i].num] = num;
		}
		else {
			group.push({milks[i].r, group.size() + 1});
			ans ++ ;
			res[milks[i].num] = group.size();
		}
	}
	printf("%d\n", ans);
	for (int i = 0; i < n; i ++ ) printf("%d\n", res[i]);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值