模型
给定N个闭区间 [ a i , b i ] [a_i, b_i] [ai,bi],将区间分成若干组,使每组内的区间两两(包括端点)没有交集。求组数的最小值。
输入N,表示区间数
接下去N行,每行包括 a i , b i a_i, b_i ai,bi,表示一个区间的两个端点。
1
≤
N
≤
105
1≤N≤105
1≤N≤105
−
1
0
9
≤
a
i
≤
b
i
≤
1
0
9
-10^9\leq a_i \leq b_i \leq 10^9
−109≤ai≤bi≤109
输出组数的最小值
算法
将区间按左端点从小到大排序,依次枚举每个区间。
- 判断能否将其放到某个现有的组中(如果组中所有区间的最大的右端点(
m
a
x
r
max_r
maxr)
<
<
<这个区间的左端点,则能)
- 不存在这样的组,开一个新组,把这个区间放进去
- 存在这样的组,将这个区间放入组中,更新 m a x r max_r maxr
在 判断能否将其放到某个现有的组中(如果组中所有区间的最大的右端点( m a x r max_r maxr) < < <这个区间的左端点,则能),这一步需要用小根堆,把所有组最小的右端点最大值放在堆顶,这样能防止遍历所有组超时。
正确性
设算法得到的组的个数是A,最优解得到组的个数是B
A
≥
B
A\geq B
A≥B:
因为这种选法每个组内每个区间都没有交集,因此A是合法解,最优解显然不超过合法解。
A
≤
B
A\leq B
A≤B:
观察新开第A组的时刻,要新开第A组,则前A-1组内都存在区间和当前区间冲突。也就是这些区间都包含当前区间的左端点,因此这些区间都是两两冲突的。
因此这些两两冲突的区间只能各自在自己的组里,不能在同一组中,所以任何可行的方案都至少要开A组,最优解也是一种可行方案,因此 A ≤ B A\leq B A≤B。
代码实现
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
typedef pair<int, int> PII;
const int N = 50005;
struct Milk{
int l, r, num;
bool operator< (const Milk &W)const {
return l < W.l;
}
}milks[N];
int n, ans, res[N];
priority_queue<PII, vector<PII>, greater<PII> > group;
int main() {
scanf("%d", &n);
for (int i = 0; i < n; i ++ ) {
scanf("%d%d", &milks[i].l, &milks[i].r);
milks[i].num = i;
}
sort(milks, milks + n);
for (int i = 0; i < n; i ++ ) {
if (group.size() && group.top().first < milks[i].l) {
int num = group.top().second;
group.pop();
group.push({milks[i].r, num});
res[milks[i].num] = num;
}
else {
group.push({milks[i].r, group.size() + 1});
ans ++ ;
res[milks[i].num] = group.size();
}
}
printf("%d\n", ans);
for (int i = 0; i < n; i ++ ) printf("%d\n", res[i]);
return 0;
}