[区间问题] 区间分组(区间问题+贪心)

0. 前言

玄学的贪心问题,一般全凭直觉。

贪心问题没有固定讨论,没有模板,见多了就好了,证明想法的正确性是很困难的,大多采用反证法。

区间问题无非左端点、右端点、左右端点排序…

1. 区间问题+贪心

906. 区间分组

在这里插入图片描述

贪心思路:

  • 区间按左端点从小到大排序
  • 从前往后依次枚举每个区间
    • 判断能否将其放到某个现有的组中,即:range[i].l > MAX_r区间左端点大于当前组的右端点的最大值则说明不相交,否则必定存在相交部分,因为在此保证了左端点排序
      • 如果不存在这样的组,则建立一个新组,将其放进去
      • 如果存在这样的组,将该区间放入,并更新当前组的右端点的最大值 MAX_r

证明:

  • 假设最优解为 ans 个组,以上述贪心思路选出来的组为 cnt 个。即证明 ans = cnt,等价于 ans >= cnt && ans <= cnt
  • 首先,以上述贪心思路选择出的 cnt 个组,组内区间一定两两不交,是一组可行方案ans 表示的是所有可行方案的最小值,那么 ans <= cnt 成立
  • 考虑当有 cnt-1 个组时,枚举的当前即将产生新组的区间 i,意味着这个 icnt-1 都有交集,这样才能产生出第 cnt 个组。那么针对前面任何一个区间,有交集的含义就是 range[i].l <= MAX_r,且已经枚举的 1~i-1 区间是按照左端点进行枚举的。意味着每个组都能找到一个区间,其左端点小于 range[i].l,且右端点大于 range[i].l,则区间 i 就和它产生交集。那么区间 i 就自成为 cnt 组,1~cnt 组中存在公共点 range[i].l那么这 cnt 个组两两之间是无法合并的,因为存在了公共点,合并后则相交。那么就至少存在 cnt 个组,则 ans >= cnt 成立
  • 要点: 如何判断是否存在一个组的 MAX_r 小于等于当前点的左区间呢?
    • 小根堆维护所有当前组的 MAX_r,若有多个组同时满足 MAX_r < range[i].l 随意加进去一个组即可。因为更新任意一个组的 MAX_r 都是等价的。
  • 答案: 输出最后小根堆的元素数量即可,存的都是各个组的 MAX_r

代码:

#include <iostream>
#include <algorithm>
#include <queue>

using namespace std;

const int N = 1e5+5;

int n;
struct Range {
    int l, r;
    bool operator< (const Range &W) {
        return l < W.l;
    }
}range[N];

int main() {
    cin >> n;
    for (int i = 0; i < n; ++i) {
        int a, b;
        cin >> a >> b;
        range[i] = {a, b};
    }
    
    sort(range, range + n);
    
    priority_queue<int, vector<int>, greater<int>> heap;
    for (int i = 0; i < n; ++i) {
        auto r = range[i];
        if (heap.empty() || heap.top() >= r.l) heap.push(r.r);
        else {
            int t = heap.top();
            heap.pop();
            heap.push(r.r);
        }
    }
    
    cout << heap.size() << endl;
    
    return 0;
}
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ypuyu

如果帮助到你,可以请作者喝水~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值