十八、二叉树遍历序列还原
题目描述
给出二叉树的中序遍历序列和后序遍历序列,编程还原该二叉树。
输入:
第1行为二叉树的中序遍历序列
第2行为二叉树的后序遍历序列
输出:
二叉树的按层遍历序列
测试输入 | 期待的输出 | 时间限制 | 内存限制 | 额外进程 | |
---|---|---|---|---|---|
测试用例 1 | badcfeg bdfgeca | abcdefg | 1秒 | 64M | 0 |
测试用例 2 | cbdafeg cbdfgea | adebfgc | 1秒 | 64M | 0 |
测试用例 3 | edcba edcba | abcde | 1秒 | 64M | 0 |
测试用例 4 | bdfgeca gfedcba | abcdefg | 1秒 | 64M | 0 |
解题思路
由后序序列的遍历方式可知,后序序列的最后一个结点一定是二叉树的根结点。通过找到根结点在中序序列中的位置,可以将中序序列分成左右两个序列,左侧序列是根结点的左子树的中序序列,右侧序列是根结点右子树的中序序列。
对于根结点左子树的遍历来说,不管是中序遍历还是后序遍历,因为结点数的相同的,遍历结果的长度也一定相同。可以根据根结点左子树的中序遍历序列的长度,得到后序序列中根结点左子树的后序序列。对根结点的右子树同理,可以得到后序序列中根结点右子树的后序序列。
这样,根结点左右子树的中序和后序遍历序列都一一对应了起来,采用递归的方式即可将整个二叉树的关系搞清楚,并建立起二叉树。
对测试用例 2 进行说明
后序序列 cbdfgea
可以知道根结点为 a,从而将中序序列分为 cbd
、feg
,即根结点的左右子树的中序遍历序列。根节点的左子树的长度为3,可以得到后序序列中的 cbd
为根结点左子树的后序序列。同理 fge
是根结点右子树的后序序列。
将中序序列 cbd
和后序序列 cbd
结合,中序序列 feg
和后序序列 fge
结合,可以分别求出根结点的左右子树的根结点,这样递归求解下来,就可以得到整个二叉树的关系了。
上机代码
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<queue>
#include<vector>
#include<algorithm>
using namespace std;
typedef struct BiTNode
{
char data;
struct BiTNode *lchild;
struct BiTNode *rchild;
}BiTNode,*BiTree;
//找到根结点在序列中的位置
int find(char index, char *array, int len)//待查找的根结点,查找序列,序列长度
{
for (int i = 0; i < len; i++)
{
if (array[i] == index)
return i;
}
}
//递归建立二叉树
BiTree BuildBiTree(char *center, char *last, int len)//中序序列、后序序列、序列长度
{
if (len <= 0)
return NULL;
BiTree T = new BiTNode;
T->data = last[len - 1];//后序序列的最后结点一定是根结点
int root = find(last[len - 1], center, len);//找到根结点在中序序列中的位置
//根据拆分的序列递归建树
T->lchild = BuildBiTree(center, last, root);
T->rchild = BuildBiTree(center + root + 1, last + root, len - root - 1);
return T;
}
void bfs(BiTree T) //利用队列进行层次遍历
{
BiTree tmp = (BiTree)malloc(sizeof(BiTNode));
queue<BiTree>q;
q.push(T);
while (!q.empty())
{
tmp = q.front();
cout << tmp->data;
q.pop();
if (tmp->lchild != NULL)
q.push(tmp->lchild);
if (tmp->rchild != NULL)
q.push(tmp->rchild);
}
cout << endl;
}
int main()
{
char *inorder = new char[105]; //中序序列
char *postorder = new char[105]; //后序序列
int len = 0;
BiTree bit = (BiTree)malloc(sizeof(BiTNode));
//根据输入序列建树
cin >> inorder >> postorder;
len = strlen(postorder);
bit = BuildBiTree(inorder, postorder, len);
//输出层次序列
bfs(bit);
return 0;
}