[动态规划]Leetcode64.最小路径和(python)

[动态规划]Leetcode64.最小路径和

如果读者对于动态规划思路解法还不是很了解,可以先点击链接查阅我之前的一篇博文《算法之【动态规划】详解》,很详细的介绍了动态规划求解思路及方法,有利于你更好的学习动态规划。

题目描述

给定一个包含非负整数的 *m* x *n* 网格 grid ,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。

**说明:**每次只能向下或者向右移动一步。

示例1

在这里插入图片描述

输入:grid = [[1,3,1],[1,5,1],[4,2,1]]
输出:7
解释:因为路径 1→3→1→1→1 的总和最小。

DP定义及状态方程

定义dp[i][j]表示到达(i,j)坐标处的最小路径和,达到(i,j)处只能通过两条路(i-1,j)与(i,j-1),选择其中路径和最小的一个即可,因此递推方程为dp[i][j] = min(dp[i-1][j],dp[i][j-1]) + gird[i][j]

此题目的最终答案即为dp数组中的最后一个值:dp[-1][-1]

初始边界条件

初始化过程,对于第一列从上往下走,第一行只能从左往右走:因此dp[i][0]=dp[i-1][0]+grid[i][0], dp[0][j]=dp[0][j-1]+grid[0][j]

#初始化边界条件
dp[0][0] = grid[0][0]
for i in range(1, m):
    dp[i][0] = dp[i-1][0] + grid[i][0]
for j in range(1, n):
    dp[0][j] = dp[0][j-1] + grid[0][j]

最终代码

class Solution:
    def minPathSum(self, grid: List[List[int]]) -> int:
        m = len(grid)
        n = len(grid[0])
        dp = [[0]*n for _ in range(m)]
        dp[0][0] = grid[0][0]
        for i in range(1, m):
            dp[i][0] = dp[i-1][0] + grid[i][0]
        for i in range(1, n):
            dp[0][i] = dp[0][i-1] + grid[0][i]
        for i in range(1, m):
            for j in range(1, n):
                dp[i][j] = min(dp[i][j-1], dp[i-1][j]) + grid[i][j]
        return dp[-1][-1]

如果喜欢作者,欢迎点赞、收藏及关注,谢谢!

欢迎扫描下面二维码关注公众号:阿旭算法与机器学习, 和作者共同学习交流。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿_旭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值