【决策树】一文看懂图解决策树原理:信息熵、条件熵与信息增益

本文用过图解的方式并结合实际案例的方式讲述了决策树的基本原理,主要包含信息熵、条件熵与信息增益的概念与计算方式,以及如何选择各个决策节点即:选择信息增益最大的特征)

想要PDF文档的小伙伴,通过关注GZH:阿旭算法与机器学习,回复:“决策树”即可获取。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

重要结论

1.信息熵用来衡量信息的不确定性或者混乱程度的;
2.信息的不确定性越大熵越大;
3.决策树每个节点的选择,选择信息增益最大的特征;

如果文章对你有帮助,感谢点赞+关注!

PDF获取方式:关注下方GZH:阿旭算法与机器学习,回复:“决策树”即可获取本文PDF。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿_旭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值