Broadcast State是Flink 1.5引入的功能,本文将跟大家分享Broadcast State的潜在使用场景,并使用电商用户行为分析的例子来演示Broadcast State的使用方法。关于Flink状态的基本原理,Keyed State和Operator State的使用方法,可以参考我之前的文章:Flink状态详解。
本文代码已上传到github:https://github.com/luweizheng/flink-tutorials
Broadcast State使用场景
无论是分布式批处理还是流处理,将部分数据同步到所有实例上是一个十分常见的需求。例如,我们需要依赖一个不断变化的控制规则来处理主数据流的数据,主数据流数据量比较大,只能分散到多个算子实例上,控制规则数据相对比较小,可以分发到所有的算子实例上。Broadcast State与直接在时间窗口进行两个数据流的Join的不同点在于,控制规则数据量较小,可以直接放到每个算子实例里,这样可以大大提高主数据流的处理速度。
我们继续使用电商平台用户行为分析为例,不同类型的用户往往有特定的行为模式,有些用户购买欲望强烈,有些用户反复犹豫才下单,有些用户频繁爬取数据,有盗刷数据的嫌疑,电商平台运营人员为了提升商品的购买转化率,保证平台的使用体验,经常会进行一些用户行为模式分析。基于这个场景,我们可以构建一个Flink作业,实时监控识别不同模式的用户。为了避免每次更新规则模式后重启部署,我们可以将规则模式作为一个数据流与用户行为数据流connect
在一起,并将规则模式以Broadcast State的形式广播到每个算子实例上。
电商用户行为识别案例
下面开始具体构建一个实例程序。第一步,我们定义一些必要的数据结构来描述这个业务场景,包括用户行为和规则模