MongoDB入门
简介:
- MongoDB是为了快速开发互联网Web应用而设计的数据库系统
- MongoDB的设计目标是极简、灵活、作为Web应用栈的一部分
- MongoDB的数据类型是面向文档的,所谓文档是一种类似JSON的结构,简单理解MongoDB这个数据库中存的是各种各样的JSON(BSON)
ACID vs BASE
ACID | BASE |
---|---|
原子性(Atomicity) | 基本可用(Basically Available) |
一致性(Consistency) | 软状态/柔性事务(Soft state) |
隔离性(Isolation) | 最终一致性 (Eventual consistency) |
持久性 (Durable) |
NoSQL 数据库分类
类型 | 部分代表 | 特点 |
---|---|---|
列存储 | HbaseCassandraHypertable | 顾名思义,是按列存储数据的。最大的特点是方便存储结构化和半结构化数据,方便做数据压缩,对针对某一列或者某几列的查询有非常大的IO优势。 |
文档存储 | MongoDBCouchDB | 文档存储一般用类似json的格式存储,存储的内容是文档型的。这样也就有机会对某些字段建立索引,实现关系数据库的某些功能。 |
key-value存储 | Tokyo Cabinet / TyrantBerkeley DBMemcacheDBRedis | 可以通过key快速查询到其value。一般来说,存储不管value的格式,照单全收。(Redis包含了其他功能) |
图存储 | Neo4JFlockDB | 图形关系的最佳存储。使用传统关系数据库来解决的话性能低下,而且设计使用不方便。 |
对象存储 | db4oVersant | 通过类似面向对象语言的语法操作数据库,通过对象的方式存取数据。 |
xml数据库 | Berkeley DB XMLBaseX | 高效的存储XML数据,并支持XML的内部查询语法,比如XQuery,Xpath。 |
三大概念
- 数据库(database):数据库是一个仓库,在仓库可以存放集合。
- 集合(colletion):集合类似于数组,在集合中可以存放文档。
- 文档(document):文档数据库的最小单位,我们存储和操作的内容都是文档。
SQL术语/概念 | MongoDB术语/概念 | 解释/说明 |
---|---|---|
database | database | 数据库 |
table | collection | 数据库表/集合 |
row | document | 数据记录行/文档 |
column | field | 数据字段/域 |
index | index | 索引 |
table joins | 表连接,MongoDB不支持 | |
primary key | primary key | 主键,MongoDB自动将_id字段设置为主键 |
数据库服务和客户端 | |
---|---|
Mysqld/Oracle | mongod |
mysql/sqlplus | mongo |
文档
文档是一组键值(key-value)对(即 BSON)。MongoDB 的文档不需要设置相同的字段,并且相同的字段不需要相同的数据类型,这与关系型数据库有很大的区别,也是 MongoDB 非常突出的特点。
一个简单的文档例子如下:
{"site":"www.runoob.com", "name":"菜鸟教程"}
集合
集合就是 MongoDB 文档组,类似于 RDBMS (关系数据库管理系统:Relational Database Management System)中的表格。
集合存在于数据库中,集合没有固定的结构,这意味着你在对集合可以插入不同格式和类型的数据,但通常情况下我们插入集合的数据都会有一定的关联性。
比如,我们可以将以下不同数据结构的文档插入到集合中:
{"site":"www.baidu.com"}
{"site":"www.google.com","name":"Google"}
{"site":"www.runoob.com","name":"菜鸟教程","num":5}
# 当第一个文档插入时,集合就会被创建。
> db.col.insert({age:21+1})
WriteResult({ "nInserted" : 1 })
> db.col.findOne()
{ "_id" : ObjectId("6046ec24721a827e70cede43"), "age" : 22 }
>
capped collections
Capped collections 就是固定大小的collection。
它有很高的性能以及队列过期的特性(过期按照插入的顺序). 有点和 “RRD” 概念类似。
Capped collections 是高性能自动的维护对象的插入顺序。它非常适合类似记录日志的功能和标准的 collection 不同,你必须要显式的创建一个capped collection,指定一个 collection 的大小,单位是字节。collection 的数据存储空间值提前分配的。
Capped collections 可以按照文档的插入顺序保存到集合中,而且这些文档在磁盘上存放位置也是按照插入顺序来保存的,所以当我们更新Capped collections 中文档的时候,更新后的文档不可以超过之前文档的大小,这样话就可以确保所有文档在磁盘上的位置一直保持不变。
由于 Capped collection 是按照文档的插入顺序而不是使用索引确定插入位置,这样的话可以提高增添数据的效率。MongoDB 的操作日志文件 oplog.rs 就是利用 Capped Collection 来实现的。
要注意的是指定的存储大小包含了数据库的头信息。
db.createCollection("mycoll", {capped:true, size:100000})
- 在 capped collection(有限集合) 中,你能添加新的对象。
- 能进行更新,然而,对象不会增加存储空间。如果增加,更新就会失败 。
- 使用 Capped Collection 不能删除一个文档,可以使用 drop() 方法删除 collection 所有的行。
- 删除之后,你必须显式的重新创建这个 collection。
- 在32bit机器中,capped collection 最大存储为 1e9( 1X109)个字节。
本地连接(Windows)
安装mongodb,设置好环境变量
-
在mongodb的根目录创建data文件夹,并在data的目录下创建db文件夹
-
用命令行打开cmd
mongod.exe --dbpath F:\MongoDB\mongodb-win32-x86_64-2012plus-4.2.13-rc1-12-g035483a\data\db
-
再打开一个cmd
命令行输入
mongo
连接mongo
连接成功!!
建立起一个永久性的服务
-
打开命令窗口,切换到mongodb安装目录下的“bin”目录中。
C:\Windows\system32>cd D:\devSoftWare\mongodb\bin
-
输入命令
mongod.exe --logpath D:\devSoftWare\mongodb\data\log\mongodb.log --logappend --dbpath D:\devSoftWare\mongodb\data --directoryperdb --serviceName MongoDB --install
-
开启服务。输入命令``net start MongoDB`。(若不生效,也可以打开任务管理器,找到相关服务,手动打开)
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-tpicGszX-1615277194732)(https://gitee.com/liu_shaoxiong/pictures/raw/master/img/image-20210309110107317.png)]
简单的使用
创建
创建数据库
当你进入mongoDB后台后,它默认会链接到 test 文档(数据库):
> mongo
MongoDB shell version: 3.0.6
connecting to: test
……
如果你想查看所有数据库,可以使用 show dbs 命令:
> show dbs
admin 0.000GB
config 0.000GB
local 0.000GB
>
由于它是一个JavaScript shell,您可以运行一些简单的算术运算:
> 2 + 2
4
>
db 命令用于查看当前操作的文档(数据库):
> db
test
>
插入一些简单的记录并查找它:
> db.runoob.insert({x:10})
WriteResult({ "nInserted" : 1 })
> db.runoob.find()
{ "_id" : ObjectId("5604ff74a274a611b0c990aa"), "x" : 10 }
>
第一个命令将数字 10 插入到 runoob 集合的 x 字段中。
运行"use"命令,可以连接到一个指定的数据库。如果数据库不存在,则创建数据库
> use local
switched to db local
> db
local
>
有一些数据库名是保留的,可以直接访问这些有特殊作用的数据库。
- admin: 从权限的角度来看,这是"root"数据库。要是将一个用户添加到这个数据库,这个用户自动继承所有数据库的权限。一些特定的服务器端命令也只能从这个数据库运行,比如列出所有的数据库或者关闭服务器。
- local: 这个数据永远不会被复制,可以用来存储限于本地单台服务器的任意集合
- config: 当Mongo用于分片设置时,config数据库在内部使用,用于保存分片的相关信息。
创建集合
db.createCollection(name, options)
参数说明:
- name: 要创建的集合名称
- options: 可选参数, 指定有关内存大小及索引的选项
在插入文档时,MongoDB 首先检查固定集合的 size 字段,然后检查 max 字段。
在 test 数据库中创建 runoob 集合:
> use test
switched to db test
> db.createCollection("runoob")
{ "ok" : 1 }
>
如果要查看已有集合,可以使用 show collections 或 show tables 命令:
> show collections
runoob
system.indexes
下面是带有几个关键参数的 createCollection() 的用法:
创建固定集合 mycol,整个集合空间大小 6142800 KB, 文档最大个数为 10000 个。
> db.createCollection("mycol", { capped : true, autoIndexId : true, size :
6142800, max : 10000 } )
{ "ok" : 1 }
>
在 MongoDB 中,你不需要创建集合。当你插入一些文档时,MongoDB 会自动创建集合。
> db.mycol2.insert({"name" : "菜鸟教程"})
> show collections
mycol2
...
删除
删除数据库
以下实例我们删除了数据库 runoob。
首先,查看所有数据库:
> show dbs
admin 0.000GB
config 0.000GB
local 0.000GB
runoob 0.000GB
接下来我们切换到数据库 runoob:
> use runoob
switched to db runoob
>
执行删除命令:
> db.dropDatabase()
{ "dropped" : "runoob", "ok" : 1 }
最后,我们再通过 show dbs 命令数据库是否删除成功:
> show dbs
admin 0.000GB
config 0.000GB
local 0.000GB
删除集合
集合删除语法格式如下:
db.collection.drop()
以下实例删除了 runoob 数据库中的集合 site:
> use runoob
switched to db runoob
> db.createCollection("runoob") # 先创建集合,类似数据库中的表
> show tables # show collections 命令会更加准确点
runoob
> db.runoob.drop()
true
> show tables
>
插入文档
MongoDB 使用 insert()
或save()
方法向集合中插入文档,语法如下:
db.COLLECTION_NAME.insert(document)
或
db.COLLECTION_NAME.save(document)
- save():如果 _id 主键存在则更新数据,如果不存在就插入数据。该方法新版本中已废弃,可以使用 db.collection.insertOne() 或 db.collection.replaceOne() 来代替。
- insert(): 若插入的数据主键已经存在,则会抛 org.springframework.dao.DuplicateKeyException 异常,提示主键重复,不保存当前数据。
3.2 版本之后新增了 db.collection.insertOne() 和 db.collection.insertMany()。
db.collection.insertOne() 用于向集合插入一个新文档,语法格式如下:
db.collection.insertOne(
<document>,
{
writeConcern: <document>
}
)
db.collection.insertMany() 用于向集合插入一个多个文档,语法格式如下:
db.collection.insertMany(
[ <document 1> , <document 2>, ... ],
{
writeConcern: <document>,
ordered: <boolean>
}
)
参数说明:
- document:要写入的文档。
- writeConcern:写入策略,默认为 1,即要求确认写操作,0 是不要求。
- ordered:指定是否按顺序写入,默认 true,按顺序写入。
实例
以下文档可以存储在 MongoDB 的 runoob 数据库 的 col 集合中:
>db.col.insert({title: 'MongoDB 教程',
description: 'MongoDB 是一个 Nosql 数据库',
by: '菜鸟教程',
url: 'http://www.runoob.com',
tags: ['mongodb', 'database', 'NoSQL'],
likes: 100
})
以上实例中 col 是我们的集合名,如果该集合不在该数据库中, MongoDB 会自动创建该集合并插入文档。
查看已插入文档:
> db.col.find()
{ "_id" : ObjectId("56064886ade2f21f36b03134"), "title" : "MongoDB 教程", "description" : "MongoDB 是一个 Nosql 数据库", "by" : "菜鸟教程", "url" : "http://www.runoob.com", "tags" : [ "mongodb", "database", "NoSQL" ], "likes" : 100 }
>
我们也可以将数据定义为一个变量,如下所示:
> document=({title: 'MongoDB 教程',
description: 'MongoDB 是一个 Nosql 数据库',
by: '菜鸟教程',
url: 'http://www.runoob.com',
tags: ['mongodb', 'database', 'NoSQL'],
likes: 100
});
执行后显示结果如下:
{
"title" : "MongoDB 教程",
"description" : "MongoDB 是一个 Nosql 数据库",
"by" : "菜鸟教程",
"url" : "http://www.runoob.com",
"tags" : [
"mongodb",
"database",
"NoSQL"
],
"likes" : 100
}
执行插入操作:
> db.col.insert(document)
WriteResult({ "nInserted" : 1 })
>
插入文档你也可以使用 db.col.save(document) 命令。如果不指定 _id 字段 save() 方法类似于 insert() 方法。如果指定 _id 字段,则会更新该 _id 的数据。
更新文档
https://www.runoob.com/mongodb/mongodb-update.html
删除文档
https://www.runoob.com/mongodb/mongodb-remove.html
查询文档
https://www.runoob.com/mongodb/mongodb-query.html
条件操作符
https://www.runoob.com/mongodb/mongodb-operators.html
$type 操作符
https://www.runoob.com/mongodb/mongodb-operators-type.html
Limit与Skip方法
https://www.runoob.com/mongodb/mongodb-limit-skip.html
排序 sort() 方法
https://www.runoob.com/mongodb/mongodb-sort.html
索引 createIndex() 方法
https://www.runoob.com/mongodb/mongodb-indexing.html
聚合 aggregate()方法
https://www.runoob.com/mongodb/mongodb-aggregate.html
MongoDB 复制(副本集)
MongoDB复制是将数据同步在多个服务器的过程。
复制提供了数据的冗余备份,并在多个服务器上存储数据副本,提高了数据的可用性, 并可以保证数据的安全性。
复制还允许您从硬件故障和服务中断中恢复数据。
什么是复制?
- 保障数据的安全性
- 数据高可用性 (24*7)
- 灾难恢复
- 无需停机维护(如备份,重建索引,压缩)
- 分布式读取数据
MongoDB复制原理
mongodb的复制至少需要两个节点。其中一个是主节点,负责处理客户端请求,其余的都是从节点,负责复制主节点上的数据。
mongodb各个节点常见的搭配方式为:一主一从、一主多从。
主节点记录在其上的所有操作oplog,从节点定期轮询主节点获取这些操作,然后对自己的数据副本执行这些操作,从而保证从节点的数据与主节点一致。
MongoDB复制结构图如下所示:
以上结构图中,客户端从主节点读取数据,在客户端写入数据到主节点时, 主节点与从节点进行数据交互保障数据的一致性。
副本集特征:
- N 个节点的集群
- 任何节点可作为主节点
- 所有写入操作都在主节点上
- 自动故障转移
- 自动恢复
MongoDB副本集设置
在本教程中我们使用同一个MongoDB来做MongoDB主从的实验, 操作步骤如下:
1、关闭正在运行的MongoDB服务器。
现在我们通过指定 --replSet 选项来启动mongoDB。–replSet 基本语法格式如下:
mongod --port "PORT" --dbpath "YOUR_DB_DATA_PATH" --replSet "REPLICA_SET_INSTANCE_NAME"
实例
mongod --port 27017 --dbpath "D:\set up\mongodb\data" --replSet rs0
以上实例会启动一个名为rs0的MongoDB实例,其端口号为27017。
启动后打开命令提示框并连接上mongoDB服务。
在Mongo客户端使用命令rs.initiate()来启动一个新的副本集。
我们可以使用rs.conf()来查看副本集的配置
查看副本集状态使用 rs.status() 命令
副本集添加成员
添加副本集的成员,我们需要使用多台服务器来启动mongo服务。进入Mongo客户端,并使用rs.add()方法来添加副本集的成员。
语法
rs.add() 命令基本语法格式如下:
>rs.add(HOST_NAME:PORT)
实例
假设你已经启动了一个名为mongod1.net,端口号为27017的Mongo服务。 在客户端命令窗口使用rs.add() 命令将其添加到副本集中,命令如下所示:
>rs.add("mongod1.net:27017")
>
MongoDB中你只能通过主节点将Mongo服务添加到副本集中, 判断当前运行的Mongo服务是否为主节点可以使用命令db.isMaster() 。
MongoDB的副本集与我们常见的主从有所不同,主从在主机宕机后所有服务将停止,而副本集在主机宕机后,副本会接管主节点成为主节点,不会出现宕机的情况。
MongoDB 分片
分片
在Mongodb里面存在另一种集群,就是分片技术,可以满足MongoDB数据量大量增长的需求。
当MongoDB存储海量的数据时,一台机器可能不足以存储数据,也可能不足以提供可接受的读写吞吐量。这时,我们就可以通过在多台机器上分割数据,使得数据库系统能存储和处理更多的数据。
为什么使用分片
- 复制所有的写入操作到主节点
- 延迟的敏感数据会在主节点查询
- 单个副本集限制在12个节点
- 当请求量巨大时会出现内存不足。
- 本地磁盘不足
- 垂直扩展价格昂贵
MongoDB分片
下图展示了在MongoDB中使用分片集群结构分布:
上图中主要有如下所述三个主要组件:
-
Shard:
用于存储实际的数据块,实际生产环境中一个shard server角色可由几台机器组个一个replica set承担,防止主机单点故障
-
Config Server:
mongod实例,存储了整个 ClusterMetadata,其中包括 chunk信息。
-
Query Routers:
前端路由,客户端由此接入,且让整个集群看上去像单一数据库,前端应用可以透明使用。
分片实例
分片结构端口分布如下:
Shard Server 1:27020
Shard Server 2:27021
Shard Server 3:27022
Shard Server 4:27023
Config Server :27100
Route Process:40000
步骤一:启动Shard Server
[root@100 /]# mkdir -p /www/mongoDB/shard/s0
[root@100 /]# mkdir -p /www/mongoDB/shard/s1
[root@100 /]# mkdir -p /www/mongoDB/shard/s2
[root@100 /]# mkdir -p /www/mongoDB/shard/s3
[root@100 /]# mkdir -p /www/mongoDB/shard/log
[root@100 /]# /usr/local/mongoDB/bin/mongod --port 27020 --dbpath=/www/mongoDB/shard/s0 --logpath=/www/mongoDB/shard/log/s0.log --logappend --fork
....
[root@100 /]# /usr/local/mongoDB/bin/mongod --port 27023 --dbpath=/www/mongoDB/shard/s3 --logpath=/www/mongoDB/shard/log/s3.log --logappend --fork
步骤二: 启动Config Server
[root@100 /]# mkdir -p /www/mongoDB/shard/config
[root@100 /]# /usr/local/mongoDB/bin/mongod --port 27100 --dbpath=/www/mongoDB/shard/config --logpath=/www/mongoDB/shard/log/config.log --logappend --fork
**注意:**这里我们完全可以像启动普通mongodb服务一样启动,不需要添加—shardsvr和configsvr参数。因为这两个参数的作用就是改变启动端口的,所以我们自行指定了端口就可以。
步骤三: 启动Route Process
/usr/local/mongoDB/bin/mongos --port 40000 --configdb localhost:27100 --fork --logpath=/www/mongoDB/shard/log/route.log --chunkSize 500
mongos启动参数中,chunkSize这一项是用来指定chunk的大小的,单位是MB,默认大小为200MB.
步骤四: 配置Sharding
接下来,我们使用MongoDB Shell登录到mongos,添加Shard节点
[root@100 shard]# /usr/local/mongoDB/bin/mongo admin --port 40000
MongoDB shell version: 2.0.7
connecting to: 127.0.0.1:40000/admin
mongos> db.runCommand({ addshard:"localhost:27020" })
{ "shardAdded" : "shard0000", "ok" : 1 }
......
mongos> db.runCommand({ addshard:"localhost:27029" })
{ "shardAdded" : "shard0009", "ok" : 1 }
mongos> db.runCommand({ enablesharding:"test" }) #设置分片存储的数据库
{ "ok" : 1 }
mongos> db.runCommand({ shardcollection: "test.log", key: { id:1,time:1}})
{ "collectionsharded" : "test.log", "ok" : 1 }
步骤五: 程序代码内无需太大更改,直接按照连接普通的mongo数据库那样,将数据库连接接入接口40000
MongoDB 备份(mongodump)与恢复(mongorestore)
MongoDB数据备份
在Mongodb中我们使用mongodump命令来备份MongoDB数据。该命令可以导出所有数据到指定目录中。
mongodump命令可以通过参数指定导出的数据量级转存的服务器。
语法
mongodump命令脚本语法如下:
>mongodump -h dbhost -d dbname -o dbdirectory
-
-h:
MongoDB 所在服务器地址,例如:127.0.0.1,当然也可以指定端口号:127.0.0.1:27017
-
-d:
需要备份的数据库实例,例如:test
-
-o:
备份的数据存放位置,例如:c:\data\dump,当然该目录需要提前建立,在备份完成后,系统自动在dump目录下建立一个test目录,这个目录里面存放该数据库实例的备份数据。
实例
在本地使用 27017 启动你的mongod服务。打开命令提示符窗口,进入MongoDB安装目录的bin目录输入命令mongodump:
>mongodump
执行以上命令后,客户端会连接到ip为 127.0.0.1 端口号为 27017 的MongoDB服务上,并备份所有数据到 bin/dump/ 目录中。命令输出结果如下:
mongodump 命令可选参数列表如下所示:
语法 | 描述 | 实例 |
---|---|---|
mongodump --host HOST_NAME --port PORT_NUMBER | 该命令将备份所有MongoDB数据 | mongodump --host runoob.com --port 27017 |
mongodump --dbpath DB_PATH --out BACKUP_DIRECTORY | mongodump --dbpath /data/db/ --out /data/backup/ | |
mongodump --collection COLLECTION --db DB_NAME | 该命令将备份指定数据库的集合。 | mongodump --collection mycol --db test |
MongoDB数据恢复
mongodb使用 mongorestore 命令来恢复备份的数据。
语法
mongorestore命令脚本语法如下:
>mongorestore -h <hostname><:port> -d dbname <path>
-
–host <:port>, -h <:port>:
MongoDB所在服务器地址,默认为: localhost:27017
-
–db , -d :
需要恢复的数据库实例,例如:test,当然这个名称也可以和备份时候的不一样,比如test2
-
–drop:
恢复的时候,先删除当前数据,然后恢复备份的数据。就是说,恢复后,备份后添加修改的数据都会被删除,慎用哦!
-
: mongorestore 最后的一个参数,设置备份数据所在位置,例如:c:\data\dump\test。
你不能同时指定
和 --dir 选项,–dir也可以设置备份目录。 -
–dir:
指定备份的目录
你不能同时指定
和 --dir 选项。
接下来我们执行以下命令:
>mongorestore
执行以上命令输出结果如下:
MongoDB 监控
在你已经安装部署并允许MongoDB服务后,你必须要了解MongoDB的运行情况,并查看MongoDB的性能。这样在大流量得情况下可以很好的应对并保证MongoDB正常运作。
MongoDB中提供了mongostat 和 mongotop 两个命令来监控MongoDB的运行情况。
mongostat 命令
mongostat是mongodb自带的状态检测工具,在命令行下使用。它会间隔固定时间获取mongodb的当前运行状态,并输出。如果你发现数据库突然变慢或者有其他问题的话,你第一手的操作就考虑采用mongostat来查看mongo的状态。
启动你的Mongod服务,进入到你安装的MongoDB目录下的bin目录, 然后输入mongostat命令,如下所示:
D:\set up\mongodb\bin>mongostat
以上命令输出结果如下:
mongotop 命令
mongotop也是mongodb下的一个内置工具,mongotop提供了一个方法,用来跟踪一个MongoDB的实例,查看哪些大量的时间花费在读取和写入数据。 mongotop提供每个集合的水平的统计数据。默认情况下,mongotop返回值的每一秒。
启动你的Mongod服务,进入到你安装的MongoDB目录下的bin目录, 然后输入mongotop命令,如下所示:
D:\set up\mongodb\bin>mongotop
以上命令执行输出结果如下:
带参数实例
E:\mongodb-win32-x86_64-2.2.1\bin>mongotop 10
后面的10是**参数 ,可以不使用,等待的时间长度,以秒为单位,mongotop等待调用之间。通过的默认mongotop返回数据的每一秒。
E:\mongodb-win32-x86_64-2.2.1\bin>mongotop --locks
报告每个数据库的锁的使用中,使用mongotop - 锁,这将产生以下输出:
输出结果字段说明:
-
ns:
包含数据库命名空间,后者结合了数据库名称和集合。
-
db:
包含数据库的名称。名为 . 的数据库针对全局锁定,而非特定数据库。
-
total:
mongod花费的时间工作在这个命名空间提供总额。
-
read:
提供了大量的时间,这mongod花费在执行读操作,在此命名空间。
-
write:
提供这个命名空间进行写操作,这mongod花了大量的时间。
集成SpringBoot
创建SpringBoot项目,选择web、lombok、mongodb
添加依赖
pom.xml
依赖如下:
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-mongodb</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<optional>true</optional>
</dependency>
配置文件
application.yml
配置
spring:
application:
name: spring-boot-mongodb
# mongodb
data:
mongodb:
uri: mongodb://localhost:27017/test
实体类
spring-data-mongodb中的实体映射是通过MongoMappingConverter这个类实现的。它可以通过注释把java类转换为mongodb的文档。
它有以下几种注释:
@Id - 文档的唯一标识,在mongodb中为ObjectId,它是唯一的,通过时间戳+机器标识+进程ID+自增计数器(确保同一秒内产生的Id不会冲突)构成。
@Document - 把一个java类声明为mongodb的文档,可以通过collection参数指定这个类对应的文档。@Document(collection=“mongodb”) mongodb对应表
@DBRef - 声明类似于关系数据库的关联关系。ps:暂不支持级联的保存功能,当你在本实例中修改了DERef对象里面的值时,单独保存本实例并不能保存DERef引用的对象,它要另外保存,如下面例子的Person和Account。
@Indexed - 声明该字段需要索引,建索引可以大大的提高查询效率。
@CompoundIndex - 复合索引的声明,建复合索引可以有效地提高多字段的查询效率。
@GeoSpatialIndexed - 声明该字段为地理信息的索引。
@Transient - 映射忽略的字段,该字段不会保存到mongodb。
@PersistenceConstructor - 声明构造函数,作用是把从数据库取出的数据实例化为对象。该构造函数传入的值为从DBObject中取出的数据
创建实体类DemoEntity.java
@Document(collection = "demo_collection")
@Data
public class DemoEntity {
@Id
private Long id;
private String title;
private String description;
private String by;
private String url;
}
DAO层
提供增删改查 MongoDB 接口DemoDao.java
public interface DemoDao {
void saveDemo(DemoEntity demoEntity);
void removeDemo(Long id);
void updateDemo(DemoEntity demoEntity);
DemoEntity findDemoById(Long id);
}
DAO实现类DemoDaoImpl.java
@Component
public class DemoDaoImpl implements DemoDao {
@Resource
private MongoTemplate mongoTemplate;
@Override
public void saveDemo(DemoEntity demoEntity) {
mongoTemplate.save(demoEntity);
}
@Override
public void removeDemo(Long id) {
DemoEntity demoEntity = new DemoEntity();
demoEntity.setId(id);
mongoTemplate.remove(demoEntity);
}
@Override
public void updateDemo(DemoEntity demoEntity) {
Long id = demoEntity.getId();
Query query = new Query(Criteria.where("id").is(id));
Update update = new Update();
update.set("title", demoEntity.getTitle());
update.set("description", demoEntity.getDescription());
update.set("by", demoEntity.getBy());
update.set("url", demoEntity.getUrl());
mongoTemplate.updateFirst(query,update,DemoEntity.class);
}
@Override
public DemoEntity findDemoById(Long id) {
Query query = new Query(Criteria.where("id").is(id));
DemoEntity demoEntity = mongoTemplate.findOne(query, DemoEntity.class);
return demoEntity;
}
}
测试类
@SpringBootTest
class MongodbApplicationTests {
@Autowired
private DemoDao demoDao;
@Test
void contextLoads() {
}
@Test
public void saveDemoTest() {
DemoEntity demoEntity = new DemoEntity();
demoEntity.setId(1L);
demoEntity.setTitle("Spring Boot 中使用 MongoDB");
demoEntity.setDescription("Description");
demoEntity.setBy("laoliu");
demoEntity.setUrl("http://www.baidu.com");
demoDao.saveDemo(demoEntity);
demoEntity = new DemoEntity();
demoEntity.setId(2L);
demoEntity.setTitle("Spring Boot 中使用 MongoDB");
demoEntity.setDescription("Description");
demoEntity.setBy("laoliu");
demoEntity.setUrl("http://www.baidu.com");
demoDao.saveDemo(demoEntity);
}
@Test
public void removeDemoTest() {
demoDao.removeDemo(2L);
}
@Test
public void updateDemoTest() {
DemoEntity demoEntity = new DemoEntity();
demoEntity.setId(1L);
demoEntity.setTitle("Spring Boot 中使用 MongoDB 更新数据");
demoEntity.setDescription("new description");
demoEntity.setBy("laoliu");
demoEntity.setUrl("http://www.gitee.com");
demoDao.updateDemo(demoEntity);
}
@Test
public void findDemoByIdTest() {
DemoEntity demoEntity = demoDao.findDemoById(1L);
System.out.println(demoEntity);
}
}
Demo代码
saveDemo(demoEntity);
demoEntity = new DemoEntity();
demoEntity.setId(2L);
demoEntity.setTitle("Spring Boot 中使用 MongoDB");
demoEntity.setDescription("Description");
demoEntity.setBy("laoliu");
demoEntity.setUrl("http://www.baidu.com");
demoDao.saveDemo(demoEntity);
}
@Test
public void removeDemoTest() {
demoDao.removeDemo(2L);
}
@Test
public void updateDemoTest() {
DemoEntity demoEntity = new DemoEntity();
demoEntity.setId(1L);
demoEntity.setTitle("Spring Boot 中使用 MongoDB 更新数据");
demoEntity.setDescription("new description");
demoEntity.setBy("laoliu");
demoEntity.setUrl("http://www.gitee.com");
demoDao.updateDemo(demoEntity);
}
@Test
public void findDemoByIdTest() {
DemoEntity demoEntity = demoDao.findDemoById(1L);
System.out.println(demoEntity);
}
}
# Demo代码
[gitee地址](https://gitee.com/liu_shaoxiong/mongo-db-spring-boot-test)