Simplifying Graph Convolutional Networks

本文介绍了图卷积网络(GCN)的基本原理,包括图的非欧几里得结构、图卷积算子的工作方式,以及拉普拉斯矩阵在GCN中的作用。接着,文章提出了简化的图卷积(SGC),通过消除非线性并折叠成线性变换,降低了计算复杂度。实验证明,SGC在保持一定性能的同时,效率显著提高。
摘要由CSDN通过智能技术生成

一、相关介绍

CNN处理的图像或者视频数据中像素点是排列整齐的矩阵(Euclidean Structure),如图2。但是如社交网络、信息网络中存在一些Non Euclidean Structure的数据,如图3.
在这里插入图片描述
图1 图像矩阵示意图

在这里插入图片描述

图2 社交网络拓扑示意图

所以,GCN中的Graph指的是数学中的用顶点和边建立相应关系的拓扑图。产生的原因如下:
CNN无法处理Non Euclidean Structure的数据(离散卷积无法在这样的数据上保持平移不变性),也就是每个拓扑图中每个顶点的相邻顶点数目都可能不同,无法用一个同样尺寸的卷积核来进行卷积计算。

什么是图卷积神经网络

GCN是一种能对图数据进行深度学习的方法;

图卷积算子:

在这里插入图片描述

其中,i 为中心节点

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值