下图表示一个SE 模块。主要包含Squeeze和Excitation两部分。W,H表示特征图宽,高。C表示通道数,输入特征图大小为W×H×C。
1、压缩(Squeeze)
第一步是压缩(Squeeze)操作,如下图所示
这个操作就是一个全局平均池化(global average pooling)。经过压缩操作后特征图被压缩为1×1×C向量。
2、激励(Excitation)
接下来就是激励(Excitation)操作,如下图所示
由两个全连接层组成,其中SERatio是一个缩放参数,这个参数的目的是为了减少通道个数从而降低计算量。
第一个全连接层有C*SERatio个神经元,输入为1×1×C,输出1×1×C×SERadio。
第二个全连接层有C个神经元,输入为1×1×C×SERadio,输出为1×1×C。
3、scale操作