SE模块详解

SE模块是深度学习中用于特征重weighting的一种结构,主要包括压缩(Squeeze)和激励(Excitation)两部分。Squeeze通过全局平均池化压缩特征图,Excitation通过全连接层对通道进行加权。在MobileNetV3中,SE模块被用于提升模型性能,虽然增加了参数量,但提高了精度,特别是在图像分类和目标检测任务中。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

下图表示一个SE 模块。主要包含Squeeze和Excitation两部分。W,H表示特征图宽,高。C表示通道数,输入特征图大小为W×H×C。
在这里插入图片描述

1、压缩(Squeeze)
第一步是压缩(Squeeze)操作,如下图所示
在这里插入图片描述

这个操作就是一个全局平均池化(global average pooling)。经过压缩操作后特征图被压缩为1×1×C向量。

2、激励(Excitation)
接下来就是激励(Excitation)操作,如下图所示
在这里插入图片描述

由两个全连接层组成,其中SERatio是一个缩放参数,这个参数的目的是为了减少通道个数从而降低计算量。
第一个全连接层有C*SERatio个神经元,输入为1×1×C,输出1×1×C×SERadio。
第二个全连接层有C个神经元,输入为1×1×C×SERadio,输出为1×1×C。

3、scale操作

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值