二分查找也称折半查找(Binary Search),它是一种效率较高的查找方法。但是,折半查找要求线性表必须采用顺序存储结构,而且表中元素按关键字有序排列。
查找过程
首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步查找前一子表,否则进一步查找后一子表。重复以上过程,直到找到满足条件的记录,使查找成功,或直到子表不存在为止,此时查找不成功。
二分查找的基本思想是将n个元素分成大致相等的两部分,取a[n/2]与x做比较,如果x=a[n/2],则找到x,算法中止;如果x<a[n/2],则只要在数组a的左半部分继续搜索x,如果x>a[n/2],则只要在数组a的右半部搜索x.
递归实现
#include<iostream>
using namespace std;
int a[100]={1,2,3,5,12,12,12,15,29,55};//数组中的数(由小到大)
int k;//要找的数字
int found(int x,int y)
{
int m=x+(y-x)/2;
if(x>y)//查找完毕没有找到答案,返回-1
return -1;
else
{
if(a[m]==k)
return m;//找到后返回位置.
else if(a[m]>k)
return found(x,m-1);//找左边
else
return found(m+1,y);//找右边
}
}
int main()
{
cin>>k;
cout<<found(0,9);
return 0;
}
循环实现
public static int Method(int[] nums, int low, int high, int target)
{
while (low <= high)
{
int middle = (low + high) / 2;
if (target == nums[middle])
{
return middle;
}
else if (target > nums[middle])
{
low = middle + 1;
}
else if (target < nums[middle])
{
high = middle - 1;
}
}
return -1;
}