线性代数期末小结

行列式

  1. n阶行列式的某一行(列)的每个元素与另一行(列)对应元素的代数余子式乘积之和为0
  2. 若n×n行列式为从左下到右上的对角行列式,则其符号为 ( − 1 ) n ( n + 1 ) n (-1)^{\frac{n(n+1)}{n}} (1)nn(n+1)

矩阵

  1. [ λ λ … … λ ] k = [ λ k λ k … … λ k ] \begin{bmatrix} \lambda&&& &\\&\lambda&&&\\&&……&&\\&&&&\lambda \end{bmatrix}^{k}=\begin{bmatrix} \lambda ^k&&& &\\&\lambda ^k&&&\\&&……&&\\&&&&\lambda ^k\end{bmatrix} λλλk=λkλkλk
  2. 矩阵A和B可交换 ⇒ \Rightarrow AB=BA
  3. A A ∗ = ∣ A ∣ AA^*=|A| AA=A
  4. 矩阵A可逆 ⇒ ∣ A ∣ ̸ = 0 \Rightarrow |A|\not=0 A̸=0
  5. ∣ A − 1 ∣ = ∣ A ∣ − 1 |A^{-1}|=|A|^{-1} A1=A1
  6. ∣ A ∗ ∣ = ∣ A ∣ n − 1 |A^*|=|A|^{n-1} A=An1
  7. 分块矩阵: D = [ A O O B ] D=\begin{bmatrix}A&O\\O&B\end{bmatrix} D=[AOOB],则 D n = [ A O O B ] n D^n=\begin{bmatrix}A&O\\O&B\end{bmatrix}^n Dn=[AOOB]n;
    ∣ D n ∣ = ∣ A n ∣ ∣ B n ∣ |D^n|=\begin{vmatrix}A^n\end{vmatrix}\begin{vmatrix}B^n\end{vmatrix} Dn=AnBn
    ∣ D n ∣ = ∣ A n ∣ ∣ B n ∣ |D^n|=\begin{vmatrix}A^n\end{vmatrix}\begin{vmatrix}B^n\end{vmatrix} Dn=AnBn ∣ D n ∣ = ∣ A n ∣ ∣ B n ∣ |D^n|=\begin{vmatrix}A^n\end{vmatrix}\begin{vmatrix}B^n\end{vmatrix} Dn=AnBn
  8. 矩阵A是对称矩阵 ,则 A T = A A^T=A AT=A
  9. 矩阵A是反对称矩阵 ,则 A T = − A A^T=-A AT=A
  10. 矩阵A是正定矩阵 ,则 A A T = E AA^T=E AAT=E
  11. 矩阵A,B为n阶矩阵,则 ∣ A B ∣ = ∣ A ∣ ∣ B ∣ |AB|=|A||B| AB=AB
  12. ∣ A T ∣ = ∣ A ∣ |A^T|=|A| AT=A

线性方程组

  1. 方程有解: { 唯 一 解 : r ( A ) = r ( A ‾ ) = n 无 穷 解 : r ( A ) = r ( A ‾ ) &lt; n \begin{cases}唯一解:r(A)=r(\overline{A})=n\\无穷解:r(A)=r(\overline{A})&lt;n\end{cases} {r(A)=r(A)=nr(A)=r(A)<n
  2. 方程无解: r ( A ) ̸ = r ( A ‾ ) r(A)\not=r(\overline{A}) r(A)̸=r(A)
  3. 非齐次线性方程组有解判别:
  1. 求|A|,并令|A|=0 (有未知量时,求解未知量 λ \lambda λ)
  2. ∣ A ∣ ̸ = 0 |A|\not=0 A̸=0,则方程有唯一解;若|A|=0,方程无穷解,此时进一步讨论
  3. λ \lambda λ代入原矩阵,若 r ( A ) ̸ = r ( A ‾ ) r(A)\not=r(\overline{A}) r(A)̸=r(A),方程无解,否则进一步讨论
  4. 将增广矩阵 A ‾ \overline{A} A化为阶梯形,求自由未知量
    令自由未知量为0,求得特解 ξ ∗ \xi ^* ξ,再分别令各个自由未知量为1,求 ξ i \xi _i ξi
  5. 则通解为 ξ ∗ + k 1 ξ 1 + k 2 ξ 2 + … … \xi ^*+k_1\xi_1+k_2\xi _2+…… ξ+k1ξ1+k2ξ2+

向量与坐标变换

  1. 向量线性相关性判别:
  1. (定义)对于m个n维向量 α 1 , α 2 , … … α m \alpha _1,\alpha _2,……\alpha _m α1,α2,αm,若存在一组不全为零的数 k 1 , k 2 , … … , k m k_1,k_2,……,k_m k1,k2,km使得线性组合 k 1 α 1 + k 2 α 2 + , … … , k m α m = 0 k_1\alpha _1+k_2\alpha _2+,……,k_m\alpha _m=0 k1α1+k2α2+,,kmαm=0成立,则称向量组 α 1 , α 2 , … … α m \alpha _1,\alpha _2,……\alpha _m α1,α2,αm线性相关
  2. A = [ α 1 , α 2 , … … α s ] A=[\alpha _1,\alpha _2,……\alpha _s] A=[α1,α2,αs]
    向量 β \beta β可由向量组 [ α 1 , α 2 , … … α s ] [\alpha _1,\alpha _2,……\alpha _s] [α1,α2,αs]线性表出
    &ThickSpace; ⟺ &ThickSpace; \iff 非齐次线性方程组
    [ α 1 , α 2 , … … α s ] [ x 1 x 2 . . . x s ] = α 1 x 1 + α 2 x 2 + … α s x s = β [\alpha _1,\alpha _2,……\alpha _s]\begin{bmatrix}x_1\\x_2\\.\\.\\.\\x_s\end{bmatrix}=\alpha _1x_1+\alpha _2x_2+…\alpha _sx_s=\beta [α1,α2,αs]x1x2...xs=α1x1+α2x2+αsxs=β 有解
    &ThickSpace; ⟺ &ThickSpace; \iff r [ α 1 , α 2 , … … α s ] = r [ α 1 , α 2 , … … α s , β ] r[\alpha _1,\alpha _2,……\alpha _s]=r[\alpha _1,\alpha _2,……\alpha _s,\beta] r[α1,α2,αs]=r[α1,α2,αs,β]
    (不能线性表出 &ThickSpace; ⟺ &ThickSpace; A x = 0 只 有 零 解 &ThickSpace; ⟺ &ThickSpace; r ( A ) ̸ = r ( [ A , β ] ) \iff Ax=0只有零解\iff r(A)\not= r([A,\beta]) Ax=0r(A)̸=r([A,β]))
  3. 向量组 α 1 , α 2 , … … α s \alpha _1,\alpha _2,……\alpha _s α1,α2,αs线性相关
    &ThickSpace; ⟺ &ThickSpace; \iff 齐次线性方程组
    [ α 1 , α 2 , … … α s ] [ x 1 x 2 . . . x s ] = α 1 x 1 + α 2 x 2 + … α s x s = 0 [\alpha _1,\alpha _2,……\alpha _s]\begin{bmatrix}x_1\\x_2\\.\\.\\.\\x_s\end{bmatrix}=\alpha _1x_1+\alpha _2x_2+…\alpha _sx_s=0 [α1,α2,αs]x1x2...xs=α1x1+α2x2+αsxs=0 有非零解
    &ThickSpace; ⟺ &ThickSpace; \iff 向量组的秩 r ( α 1 , α 2 , … … α s ) &lt; s r(\alpha _1,\alpha _2,……\alpha _s)&lt;s r(α1,α2,αs)<s
    (线性无关 &ThickSpace; ⟺ &ThickSpace; A x = 0 \iff Ax=0 Ax=0只有零解 &ThickSpace; ⟺ &ThickSpace; \iff A的列秩= s s s
  4. n+1个n维列向量,因 r ( α 1 , α 2 , … … α s , β ) ≤ n &lt; n + 1 r(\alpha _1,\alpha _2,……\alpha _s,\beta)\le n&lt; n+1 r(α1,α2,αs,β)n<n+1,故 [ α 1 , α 2 , … … α n + 1 ] x = 0 [\alpha _1,\alpha _2,……\alpha _{n+1 }]x=0 [α1,α2,αn+1]x=0必有非零解 &ThickSpace; ⟺ &ThickSpace; α 1 , α 2 , … … α n , α n + 1 \iff \alpha _1,\alpha _2,……\alpha _n,\alpha _{n+1 } α1,α2,αn,αn+1线性相关
  5. 向量组 α 1 , α 2 , … … α s ( s ≥ 2 ) \alpha _1,\alpha _2,……\alpha _s(s\ge2) α1,α2,αss2线性相关的充要条件是向量组中至少有一个向量可以由其余s-1个向量线性表出
    反正,向量组 α 1 , α 2 , … … α s ( s ≥ 2 \alpha _1,\alpha _2,……\alpha _s(s\ge2 α1,α2,αs(s2)线性无关的条件是任意一个向量都不能由其余的线性表出
  6. 若向量组 α 1 , α 2 , … … α s \alpha _1,\alpha _2,……\alpha _s α1,α2,αs线性无关,而向量组 α 1 , α 2 , … … α s , β ) \alpha _1,\alpha _2,……\alpha _s,\beta) α1,α2,αs,β)线性相关,则 β \beta β可由 α 1 , α 2 , … … α s \alpha _1,\alpha _2,……\alpha _s α1,α2,αs线性表出,且表示方法唯一
  7. 若向量组 ( Ⅰ ) β 1 , β 2 , … … β s (Ⅰ )\beta _1,\beta _2,……\beta _s ()β1,β2,βs中的每一个向量 β i ( i = 1 , 2 , … , s ) \beta_i(i=1,2,…,s) βi(i=1,2,,s)均可由向量组 ( Ⅱ ) α 1 , α 2 , … … α t (Ⅱ)\alpha _1,\alpha _2,……\alpha _t ()α1,α2,αt线性表出,且 s &gt; t s&gt;t s>t,则向量组 ( Ⅰ ) β 1 , β 2 , … … β s (Ⅰ )\beta _1,\beta _2,……\beta _s ()β1,β2,βs线性相关
    若向量组 ( Ⅰ ) β 1 , β 2 , … … β s (Ⅰ )\beta _1,\beta _2,……\beta _s ()β1,β2,βs中的每一个向量 β i ( i = 1 , 2 , … , s ) \beta_i(i=1,2,…,s) βi(i=1,2,,s)均可由向量组 ( Ⅱ ) α 1 , α 2 , … … α t (Ⅱ)\alpha _1,\alpha _2,……\alpha _t ()α1,α2,αt线性表出,且向量组 ( Ⅰ ) β 1 , β 2 , … … β s (Ⅰ )\beta _1,\beta _2,……\beta _s ()β1,β2,βs线性无关,则 s ≤ t s\le t st
  1. 一个向量在一组向量下的坐标
    (求 β \beta β α 1 , α 2 , … α n \alpha_1,\alpha_2,…\alpha_n α1,α2,αn下的坐标)
    r [ α 1 T , α 2 T , … , α n T ] = ? n r[\alpha^T_1,\alpha^T_2,…,\alpha^T_n]\overset ?=n r[α1T,α2T,,αnT]=?n(判断是否为一组基底)
    [ α 1 T , α 2 T , … , α n T , β T ] → [ E ∣ β ′ T ] [\alpha^T_1,\alpha^T_2,…,\alpha^T_n,\beta^T]\rightarrow[E|\beta^{&#x27;T}] [α1T,α2T,,αnT,βT][EβT]
    β ′ \beta^{&#x27;} β为新基底下的坐标
  2. 过渡矩阵 A = E A , B = E B = A A − 1 B A=EA , B=EB=AA^{-1}B A=EA,B=EB=AA1B
  3. 施密特正交化 β 1 = α 1 \beta_1=\alpha_1 β1=α1 β 2 = α 2 − ( α 2 , β 1 ) ( β 1 , β 1 ) β 1 \beta_2=\alpha_2-\frac{(\alpha_2,\beta_1)}{(\beta_1,\beta_1)}\beta_1 β2=α2(β1,β1)(α2,β1)β1 β 3 = α 3 − ( α 3 , β 2 ) ( β 2 , β 2 ) − ( α 2 , β 1 ) ( β 1 , β 1 ) β 1 \beta_3=\alpha_3-\frac{(\alpha_3,\beta_2)}{(\beta_2,\beta_2)}-\frac{(\alpha_2,\beta_1)}{(\beta_1,\beta_1)}\beta_1 β3=α3(β2,β2)(α3,β2)(β1,β1)(α2,β1)β1

特征值与特征向量

  1. (定义) A ξ = λ ξ , ξ ̸ = 0 A\xi=\lambda\xi,\xi\not=0 Aξ=λξ,ξ̸=0,则 λ \lambda λ为A的特征值, ξ \xi ξ是A的属于 λ \lambda λ的特征向量
  2. 特征值与特征向量的求法

已知矩阵A,求其特征值与特征向量

  1. ∣ λ E − A ∣ = 0 |\lambda E-A|=0 λEA=0时,取得A的特征值 λ i \lambda_i λi
  2. 分别带入 λ i \lambda_i λi,对于 λ i \lambda_i λi,由 ( λ 1 − E ) x = 0 (\lambda_1-E)x=0 (λ1E)x=0
    其中 x = [ x 1 x 2 . . x n ] x=\begin{bmatrix}x_1\\x_2\\.\\.\\x_n\end{bmatrix} x=x1x2..xn
  3. 得基础解系 ξ 1 = [ y 1 , y 2 , … , y n ] T , k 1 ξ 1 ( k ̸ = 0 ) \xi_1=[y_1,y_2,…,y_n]^T,k_1\xi_1(k\not=0) ξ1=[y1,y2,,yn]T,k1ξ1(k̸=0)为对应于 λ i \lambda_i λi的全部特征向量
  1. 矩阵的对角线元素之和为A的,记作 t r ( A ) tr(A) tr(A)
    并且有 t r ( A ) = λ 1 + λ 2 + … + λ n = a 11 + a 22 + … a n n tr(A)=\lambda_1+\lambda_2+…+\lambda_n=a_{11}+a_{22}+…a_{nn} tr(A)=λ1+λ2++λn=a11+a22+ann
  2. ∣ A ∣ = λ 1 λ 2 … λ n |A|=\lambda_1\lambda_2…\lambda_n A=λ1λ2λn
  3. λ \lambda λ为A的特征值,则有 A − 1 = 1 λ A^{-1}=\frac{1}{\lambda} A1=λ1

相似矩阵与相似对角化

  1. (定义)若A,B是两个n阶方阵,若存在n阶可逆矩阵P,使得 P − 1 A P = B P^{-1}AP=B P1AP=B,则称A相似于B(A~B)
  2. 相似矩阵的性质(A~B)
  1. r ( A ) = r ( B ) r(A)=r(B) r(A)=r(B)
  2. |A|=|B|
  3. ∣ λ E − A ∣ = ∣ λ E − B ∣ |\lambda E-A|=|\lambda E-B| λEA=λEB
  4. A和B有相同的特征值
  5. tr(A)=tr(B)
  6. A m A^m Am~ B m B^m Bm
  7. A − 1 A^{-1} A1~ B − 1 B^{-1} B1
  1. 如果A相似于一个对角型矩阵,则称A可对角化
  2. 矩阵可对角化的条件
  1. n阶矩阵 A A A~ Λ \Lambda Λ有n个线性无关的特征向量
  2. 矩阵A的属于不同特征值的特征向量线性无关
    若n阶矩阵A有n个不同的特征值,则A有n个线性无关的特征向量,于是 A A A~ Λ \Lambda Λ
  3. λ 0 \lambda_0 λ0是A的r重特征值,则A的对应于 λ 0 \lambda_0 λ0的线性无关的特征向量个数小于r。
    矩阵A相似于对角矩阵 &ThickSpace; ⟺ &ThickSpace; \iff A的对应的每个 r i r_i ri重特征值都有 r i r_i ri个线性无关的特征向量
  1. 判断矩阵是否相似于对角矩阵步骤如下:

(1)是否是实对称矩阵,实对称矩阵必然相似于对角矩阵
(2)特征值是否都是单根,若是,则比相似于对角矩阵
(3)若特征值是r重根,且对应有r个线性无关的特征向量,则相似于对角矩阵
(4)*满足 A 2 = A A^2=A A2=A的方针也必然相似于对角矩阵

  1. 实对称矩阵: A T = A ( A ∈ R n × n ) A^T=A(A\in R^{n×n}) AT=A(ARn×n)

1.A是实对称矩阵,则A的特征值是实数,特征值向量是实向量
2. 实对称矩阵A的属于不同特征值的不同向量相互正交
3. 实对称矩阵必然相似于对角矩阵,即必有n个线性无关的特征向量
ξ 1 , ξ 2 , … , ξ n \xi_1,\xi_2,…,\xi_n ξ1,ξ2,,ξn,即必有可逆矩阵 P = [ ξ 1 , ξ 2 , … , ξ n ] P=[\xi_1,\xi_2,…,\xi_n] P=[ξ1,ξ2,,ξn]使得 P − 1 A P = Λ P^{-1}AP=\Lambda P1AP=Λ,其中 Λ = d i a g ( λ 1 , λ 2 , … , λ n ) \Lambda=diag(\lambda_1,\lambda_2,…,\lambda_n) Λ=diag(λ1,λ2,,λn),且存在正交矩阵Q,使得 Q − 1 A Q = Q T A Q = Λ Q^{-1}AQ=Q^TAQ=\Lambda Q1AQ=QTAQ=Λ,故A正交相似于 Λ \Lambda Λ

二次型

  1. f ( x ) = x T A x ( A T = A ) f(x)=x^TAx(A^T=A) f(x)=xTAx(AT=A),实对称矩阵A称为二次型 f ( x ) f(x) fx的矩阵
  2. 矩阵的合同 B = C T A C B=C^TAC B=CTAC,则称A与B合同
  3. 二次型的标准型:若二次型中之含有平方项,没有交叉项
    即形如 d 1 x 1 + d 2 x 2 + d_1x_1+d_2x_2+ d1x1+d2x2+即形如 d 1 x 1 + d 2 x 2 + … + d n x n d_1x_1+d_2x_2+…+d_nx_n d1x1+d2x2++dnxn的二次型称为标准型
  4. 二次型的规范型,在标准型中,系数 d i ( i = 1 , 2 , … n ) d_i(i=1,2,…n) di(i=1,2,n)仅为 0 , 1 , − 1 0,1,-1 0,1,1时二次称为规范型
  5. 惯性定理:无论选取什么样的可逆线性变换,将二次型化为标准型或者规范形,其正项之数 p p p,负项之数 q q q都是不变的, p p p称为正惯性指数, q q q称为负惯性指数

注: (1)若二次型的秩为 r r r,则 r = p + q r=p+q r=p+q,合同变换不改变正、负惯性指数
(2)两个二次型(或实对称矩阵)合同的充要条件是有相同的正、负惯性指数,或有相同的秩及正(负)惯性指数。

  1. 正定二次型及其判别
  1. 二次型正定的充要条件: n n n元二次型 f ( x 1 , x 2 , … , x n ) = x T A x f(x_1,x_2,…,x_n)=x^TAx f(x1,x2,,xn)=xTAx,若对于任意的 x = [ x 1 , x 2 , … , x n ] T ̸ = 0 x=[x_1,x_2,…,x_n]^T\not=0 x=[x1,x2,,xn]T̸=0,均有 x T A x &gt; 0 x^TAx&gt;0 xTAx>0,则成 f f f为正定二次型,称二次型的对应矩阵A为正定矩阵
  2. 二次型正定的必要条件:
    (1) a i i &gt; 0 ( i = 1 , 2 , … , n ) ; a_{ii}&gt;0(i=1,2,…,n); aii>0(i=1,2,,n);
    (2) ∣ A ∣ &gt; 0 |A|&gt;0 A>0
  1. 用配方法化二次型为标准型

化二次型 f ( x 1 , x 2 , x 3 ) = x 1 2 + 2 x 1 x 2 + 2 x 1 x 3 − x 2 2 − 2 x 2 x 3 − x 3 2 f(x_1,x_2,x_3)=x_1^2+2x_1x_2+2x_1x_3-x_2^2-2x_2x_3-x_3^2 f(x1,x2,x3)=x12+2x1x2+2x1x3x222x2x3x32为标准型,并写出可逆线性变换

  1. 先对 x 1 2 x_1^2 x12及所有含 x 1 x_1 x1的混合项 2 x 1 x 2 , 2 x 1 x 3 2x_1x_2,2x_1x_3 2x1x2,2x1x3配完全平方,有:
    f ( x 1 , x 2 , x 3 ) = ( x 1 + x 2 + x 3 ) 2 − x 2 2 − x 3 2 − 2 x 2 x 3 − x 2 2 − 2 x 2 x 3 − x 3 2 f(x_1,x_2,x_3)=(x_1+x_2+x_3)^2-x_2^2-x_3^2-2x_2x_3-x_2^2-2x_2x_3-x_3^2 f(x1,x2,x3)=(x1+x2+x3)2x22x322x2x3x222x2x3x32
    = ( x 1 + x 2 + x 3 ) 2 − 2 x 2 2 − 4 x 2 x 3 − 2 x 3 2 =(x_1+x_2+x_3)^2-2x_2^2-4x_2x_3-2x_3^2 =(x1+x2+x3)22x224x2x32x32
  2. 再对 2 x 2 2 2x_2^2 2x22所有含 x 2 x_2 x2的混合项 − 4 x 2 x 3 -4x_2x_3 4x2x3配完全平方,有:
    f ( x 1 , x 2 , x 3 ) = ( x 1 + x 2 + x 3 ) 2 − 2 ( x 2 + x 3 ) f(x_1,x_2,x_3)=(x_1+x_2+x_3)^2-2(x_2+x_3) f(x1,x2,x3)=(x1+x2+x3)22x2+x3
  3. 作线性变换
    { y 1 = x 1 + x 2 + x 3 y 2 = x 2 + x 3 y 3 = x 3 即 { x 1 = y 1 − y 2 x 2 = y 2 − y 3 x 3 = y 3 \begin{cases}y_1=x_1+x_2+x_3\\y_2=x_2+x_3\\y_3=x_3\end{cases}即\begin{cases}x_1=y_1-y_2\\x_2=y_2-y_3\\x_3=y_3\end{cases} y1=x1+x2+x3y2=x2+x3y3=x3x1=y1y2x2=y2y3x3=y3
  4. 把二次型化为标准型
    f ( x 1 , x 2 , x 3 ) → x = C y y 1 2 − 2 y 2 2 f(x_1,x_2,x_3)\xrightarrow{x=Cy}y_1^2-2y_2^2 f(x1,x2,x3)x=Cy y122y22
  5. 将线性变换表示为矩阵形式
    其中 C = [ 1 − 1 0 0 1 − 1 0 0 1 ] , 因 ∣ C ∣ = 1 ̸ = 0 C=\begin{bmatrix}1&amp;-1&amp;0\\0&amp;1&amp;-1\\0&amp;0&amp;1\end{bmatrix},因|C|=1\not=0 C=100110011,C=1̸=0
    故所作变换是线性可逆变化
    注:
    [1]. 当配方法时没有平方项的时候,作可逆线性变换 { x 1 = y 1 + y 2 x 2 = y 2 − y 3 x 3 = y 3 \begin{cases}x_1=y_1+y_2\\x_2=y_2-y_3\\x_3=y_3\end{cases} x1=y1+y2x2=y2y3x3=y3使其出现平方项
    [2]. 当总的完全平方项的项数小于变量个数时,用视作缺少的平方项的系数为0
    f ( x 1 , x 2 , x 3 ) = ( x 1 + x 2 + x 3 ) 2 − 2 ( x 2 + x 3 ) + 0 x 3 2 f(x_1,x_2,x_3)=(x_1+x_2+x_3)^2-2(x_2+x_3)+0x_3^2 f(x1,x2,x3)=(x1+x2+x3)22x2+x3+0x32
    变换为 { x 1 = y 1 + y 2 x 2 = y 2 + y 3 x 3 = y 3 \begin{cases}x_1=y_1+y_2\\x_2=y_2+y_3\\x_3=y_3\end{cases} x1=y1+y2x2=y2+y3x3=y3
    而若变换为 { x 1 = y 1 + y 2 x 2 = y 2 − y 3 \begin{cases}x_1=y_1+y_2\\x_2=y_2-y_3\end{cases} {x1=y1+y2x2=y2y3显然是不可逆的
  1. 正交变换化二次型

用正交变换化二次型 f ( x 1 , x 2 , x 3 ) = 2 x 1 2 + 5 x 2 2 + 5 x 3 2 + 4 x 1 x 2 − 4 x 1 x 3 − 8 x 2 x 3 f(x_1,x_2,x_3)=2x_1^2+5x_2^2+5x_3^2+4x_1x_2-4x_1x_3-8x_2x_3 f(x1,x2,x3)=2x12+5x22+5x32+4x1x24x1x38x2x3为标准型

  1. 写出二次型的对应矩阵
    A = [ 2 2 − 2 2 5 − 4 − 2 − 4 5 ] A=\begin{bmatrix}2&amp;2&amp;-2\\2&amp;5&amp;-4\\-2&amp;-4&amp;5\end{bmatrix} A=222254245
  2. 求其特征方程
    ∣ λ E − A ∣ = ∣ λ − 2 − 2 2 − 2 λ − 5 4 2 4 λ − 5 ∣ = ( λ − 1 ) 2 ( λ − 10 ) = 0 &ThickSpace; ⟹ &ThickSpace; λ 1 = λ 2 = 1 , λ 3 = 10 |\lambda E-A|=\begin{vmatrix}\lambda-2&amp;-2&amp;2\\-2&amp;\lambda-5&amp;4\\2&amp;4&amp;\lambda-5\end{vmatrix}=(\lambda-1)^2(\lambda-10)=0\implies\lambda_1=\lambda_2=1,\lambda_3=10 λEA=λ2222λ5424λ5=(λ1)2(λ10)=0λ1=λ2=1,λ3=10
  3. λ 1 = λ 2 = 1 \lambda_1=\lambda_2=1 λ1=λ2=1时,有 ( E − A ) x = [ − 1 − 2 2 − 2 − 4 4 2 4 − 4 ] [ x 1 x 2 x 3 ] = 0 (E-A)x=\begin{bmatrix}-1&amp;-2&amp;2\\-2&amp;-4&amp;4\\2&amp;4&amp;-4\end{bmatrix}\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}=0 (EA)x=122244244x1x2x3=0解得基础解系为 ξ 1 = [ − 2 , 1 , 0 ] T , ξ 2 = [ 2 , 0 , 1 ] T \xi_1=[-2,1,0]^T,\xi_2=[2,0,1]^T ξ1=[2,1,0]T,ξ2=[2,0,1]T
  4. λ 3 = 10 \lambda_3=10 λ3=10时,有 ( 10 E − A ) x = [ − 8 − 2 2 − 2 5 4 2 4 5 ] [ x 1 x 2 x 3 ] = 0 (10E-A)x=\begin{bmatrix}-8&amp;-2&amp;2\\-2&amp;5&amp;4\\2&amp;4&amp;5\end{bmatrix}\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}=0 (10EA)x=822254245x1x2x3=0解得基础解系为 ξ 3 = [ 1 , 2 , − 2 ] T \xi_3=[1,2,-2]^T ξ3=[1,2,2]T
  5. 对于属于 λ 1 = λ 2 = 1 \lambda_1=\lambda_2=1 λ1=λ2=1的特征向量 ξ 1 , ξ 2 \xi_1,\xi_2 ξ1,ξ2标准正交化 η 1 = ξ 1 = [ − 2 , 1 , 0 ] T \eta_1=\xi_1=[-2,1,0]^T η1=ξ1=[2,1,0]T η 2 = ξ 2 − ( η 2 , ξ 1 ) ( ξ 1 , ξ 1 ) η 1 = [ 2 5 , 4 5 , 1 ] T , 不 妨 取 η 2 = [ 2 , 4 , 5 ] T \eta_2=\xi_2-\frac{(\eta_2,\xi_1)}{(\xi_1,\xi_1)}\eta_1=[\frac{2}{5},\frac{4}{5},1]^T,不妨取\eta_2=[2,4,5]^T η2=ξ2(ξ1,ξ1)(η2,ξ1)η1=[52,54,1]Tη2=[2,4,5]T
    6.再将 η 1 , η 2 , ξ 3 \eta_1,\eta_2,\xi_3 η1,η2,ξ3单位化 η 1 0 = [ − 2 5 1 5 0 ] , η 2 0 = [ 2 3 5 4 3 5 5 3 5 ] , η 3 0 = [ 1 3 2 3 − 2 3 ] \eta^0_1=\begin{bmatrix}\frac{-2}{\sqrt5}\\\\\frac{1}{\sqrt{5}}\\\\0\end{bmatrix},\eta_2^0=\begin{bmatrix}\frac{2}{3\sqrt5}\\\\\frac{4}{3\sqrt{5}}\\\\\frac{5}{3\sqrt5}\end{bmatrix},\eta_3^0=\begin{bmatrix}\frac{1}{3}\\\\\frac{2}{3}\\\\-\frac{2}{3}\end{bmatrix} η10=5 25 10,η20=35 235 435 5,η30=313232得正交矩阵 Q = [ η 1 0 , η 2 0 , η 3 0 ] Q=[\eta^0_1,\eta^0_2,\eta^0_3] Q=[η10,η20,η30],令 x = Q y x=Qy x=Qy,则原二次型化标准型为
    f ( x 1 , x 2 , x 3 ) = x T A x → x = Q y y T Q T A Q y = y 1 2 + y 2 2 + 10 y 3 2 f(x_1,x_2,x_3)=x^TAx\xrightarrow{x=Qy}y^TQ^TAQy=y_1^2+y_2^2+10y_3^2 f(x1,x2,x3)=xTAxx=Qy yTQTAQy=y12+y22+10y32
    其中正交变换为 x = Q y = [ − 2 5 2 3 5 1 3 1 5 4 3 5 2 3 0 5 3 5 − 2 3 ] [ y 1 y 2 y 3 ] x=Qy=\begin{bmatrix}\frac{-2}{\sqrt5}&amp;\frac{2}{3\sqrt5}&amp;\frac{1}{3}\\\\\frac{1}{\sqrt{5}}&amp;\frac{4}{3\sqrt{5}}&amp;\frac{2}{3}\\\\0&amp;\frac{5}{3\sqrt5}&amp;-\frac{2}{3}\end{bmatrix}\begin{bmatrix}y_1\\\\y_2\\\\y_3\end{bmatrix} x=Qy=5 25 1035 235 435 5313232y1y2y3

40.判别二次型的正定性

  1. 判别对应矩阵的各阶顺序主子式是否都大于零
  2. 判断 A A A的特征值是否全都大于零
  3. 利用配方法化为标准型,判断 f f f的正惯性指数 p p p时候等于n(未知量个数)
  4. 用定义,看是否对任意的 x = [ x 1 , x 2 , x 3 ] T ̸ = 0 x=[x_1,x_2,x_3]^T\not=0 x=[x1,x2,x3]T̸=0,有 x T A x &gt; 0 x^TAx&gt;0 xTAx>0.
  • 11
    点赞
  • 43
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值