线性代数期末复习

行列式

(行列式一定是方阵)
(一)行列式概念和性质(一定是方阵)
1、逆序数:所有的逆序(大的数在小的数前面)的总数
n阶排列的逆序数有个公式是:(n-1)+(n-2)+.+2+1=n(n-1)/2
例:317428695这个排列,如果要套用上面的公式,应该怎么用?
n(n-1)/2是排列n(n-1)…321的公式,按顺序依次看
在3前比3的有0个、在1前比1的有1个、在7前比7的有0个、……
以此类推,逆序数=0+1+0+1+3+0+2+0+3=10
2、行列式定义:不同行不同列元素乘积代数和,是一个数
3、行列式的性质:(都可以用来化简行列式进行计算)
(1)行列互换(转置),行列式的值不变
(2)两行(列)互换,行列式变号(一定不要忘记了)
(3)一行(列)乘k加到另一行(列),行列式的值不变。
(4)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k乘此行列式
(5)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。
(6)两行成比例,行列式的值为0。(一行减去另一行后那一行值全为0,即行列式中若有一行全为0的行,行列式值为0)
4、行列式n阶的那种计算,一般都是一行或者一列乘-1,或者n分之一,累加或者累减到同一行或一列,或者依次相加相减,然后提出公因式进行化简,然后展开一行或者一列进行降阶。
(二)重要行列式
5、上(下)三角(主对角线)行列式的值等于主对角线元素的乘积
上(下)三角(主对角线)行列式的值等于主对角线元素的乘积的行列式
6、副对角线行列式的值等于副对角线元素的乘积乘 乘这个数
★7、对角线的元素为a,其余元素为b的行列式的值
值是这个
8、用数学归纳法证明范德蒙德行列式:
证明第一张证明第二张
证明第三张
证明第四张
(三)按行(列)展开
9、按行(列)展开定理:
(1)任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值
(2)行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘积之和等于0!!!!!!!
10、克莱姆法则:
(1)非齐次线性方程组的系数行列式不为0,那么方程为唯一解
求解公式捏
(2)如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0(因为是在行列式这一块,所以系数矩阵是方阵,即方程组个数等于未知量的个数)
这一块和后面线性方程组的解不能因为答案大体相似就将他们混为一谈(至少我是这么理解的)
(3)若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解;如果方程组有非零解,那么必有D=0。

矩阵

(是一个数表,可以不是方阵)
(一)矩阵的运算
1、矩阵乘法注意事项:
(1)矩阵乘法要求前列后行一致(nxm与mxn相乘的结果是nxn)
(2)矩阵乘法不满足交换律;(因式分解的公式对矩阵不适用,但若B=E,O,A-1,A*,f(A)时,可以用交换律)
(3)AB=O不能推出A=O或B=O。
2、逆的定义:(A*A逆=单位阵E经常用在填空题让你算出一个矩阵是多少)
AB=E或BA=E成立,称A可逆,B是A的逆矩阵,记为B=A-1
注:A可逆的充要条件是|A|≠0!!判断一个矩阵是否可逆的时候用这个来判断~
A可逆的充要条件是A的标准型为E
标准型:矩阵的标准形是左上角为单位矩阵, 其余子块为0 的分块矩阵
Er 0
0 0
如果矩阵B可以由A经过一系列初等变换得到 那么矩阵A与B是等价的
经过多次变换以后,得到一种最简单的矩阵,就是这个矩阵的左上角是一个单位矩阵,其余元素都是0,那么这个矩阵就是原来矩阵的等价标准型。
3、逆的求法:(方阵下才考虑是否可逆)
(1)A为抽象矩阵:由定义或性质求解
(2)A为数字矩阵:(A|E)→初等行变换→(E|A-1)
(三)矩阵的初等变换
4、初等行(列)变换定义:
(1)两行(列)互换;
(2)一行(列)乘非零常数c
(3)一行(列)乘k加到另一行(列)
5、初等矩阵:单位矩阵E经过一次初等变换得到的矩阵。(是一次啊!!)
A和B均为n阶矩阵,且(A+B)²=(A+B)(A+B)=A²+AB+BA+B²=A²+2AB+B²,则必有AB=BA,大胆展开!矩阵无交换律所以题目中必有玄机~
E是很常见出现的!!特别是求逆矩阵的时候!
对称矩阵转置等于它本身~
6、初等变换与初等矩阵的性质:
(1)初等行(列)变换相当于左(右)乘相应的初等矩阵(左行右列)
(2)初等矩阵均为可逆矩阵,且Eij-1=Eij(i,j两行互换);
Ei-1(c)=Ei(1/c)(第i行(列)乘c)
Eij-1(k)=Eij(-k)(第i行乘k加到j)
★(四)矩阵的秩(至少有一个r阶子式不为0,且所有r+1阶子式都为0)
7、秩的定义:非零子式的最高阶数
注:(1)r(A)=0意味着所有元素为0,即A=O
(2)r(An×n)=n(满秩)←→ |A|≠0 ←→A可逆;r(A)<n←→|A|=0←→A不可逆
(3)r(A)=r(r=1、2、…、n-1)←→r阶子式非零且所有r+1子式均为0。
设矩阵A的秩为r,则A至少有一个r阶子式不等于0
所有r-1阶子式都不为0→r(A)≥r-1
所有r-1阶子式都为0→r(A)<r-1
所有r-1阶子式都不为0→r(A)≥r
8、秩的求法:
(1)A为抽象矩阵:由定义或性质求解;
(2)A为数字矩阵:A→初等行变换→阶梯型(每行第一个非零元素下面的元素均为0),则r(A)=非零行的行数
行向量组的秩=列向量组的秩=矩阵的秩(有时候看着不是但算一下就知道成立……)
所以在这放一道题!就是XXX大学线性代数期末考试题第四道问行向量组是不是线性相关的。(有的时候列向量组线性无关不代表行向量组线性无关~~(如果向量组有一个向量能被表示——))
(六)分块矩阵
9、分块矩阵的乘法:要求前列后行分法相同。
10、分块矩阵求逆:
分块矩阵求逆
矩阵秩的本质是组成该矩阵的线性无关的向量的个数。
11、行列式能不能跟矩阵一样进行分块计算吗?
搜狗百科永远滴神
总之如果分出来的块不是全0的不要贸然去乘就是了……要按照定理把矩阵\行列式变成一整块都是零

向量

(向量也有秩这个概念)
(一)向量的概念及运算
1、向量的内积:(α,β)=αTβ=βTα
2、长度定义: ||α||=
3、正交定义:(α,β)=αTβ=βTα=a1b1+a2b2+…+anbn=0
4、正交矩阵的定义:A为n阶矩阵,AAT=E ←→ A-1=AT ←→ ATA=E → |A|=±1
(二)线性组合和线性表示
5、线性表示的充要条件:
非零列向量β可由α1,α2,…,αs线性表示
(1)←→非齐次线性方程组(α1,α2,…,αs)(x1,x2,…,xs)T=β有解。
★(2)←→r(α1,α2,…,αs)=r(α1,α2,…,αs,β)(系数矩阵的秩等于增广矩阵的秩,用于大题第一步的检验)
6、线性表示的充分条件:(了解即可)
若α1,α2,…,αs线性无关,α1,α2,…,αs,β线性相关,则β可由α1,α2,…,αs线性表示。
7、线性表示的求法:(大题第二步)
设α1,α2,…,αs线性无关,β可由其线性表示。
(α1,α2,…,αs|β)→初等行变换→(行最简形|系数)
行最简形:每行第一个非0的数为1,其余元素均为0
(三)线性相关和线性无关
8、线性相关注意事项:
(1)α线性相关←→α=0
(2)α1,α2线性相关←→α1,α2成比例
有时候证明题的时候可以用反证法,假设小问的条件成立,但是和题目的条件还是冲突的话就不成立。可以用到k,t这种待定系数。一般证明题的第二小问都会用到第一问需要证明的结论。
① 零向量可由任意向量来表示
② 向量组中任一向量可由向量组表示
不管给的向量是行或列,α1,α2,…,αn按列均做成方程组的系数,β按列做右端常数项
9、线性相关的充要条件:
向量组α1,α2,…,αs线性相关
(1)←→有个向量可由其余向量线性表示;
(2)←→齐次方程(α1,α2,…,αs)(x1,x2,…,xs)T=0有非零解;
★(3)←→r(α1,α2,…,αs)<s 即秩小于个数
特别地,n个n维列向量α1,α2,…,αn线性相关
(1)←→ r(α1,α2,…,αn)<n
(2)←→|α1,α2,…,αn |=0
(3)←→(α1,α2,…,αn)不可逆
写出式子→化成行变换阶梯型→判断是否有解→若有解→向量可被方程组线性表示(感觉还不够严谨
10、线性表示≠线性相关
(1)定义不同
线性表示是一种重要的表达形式,指线性空间中的一个元素可通过另一组元素的线性运算来表示。零向量可由任一组向量线性表示。
在线性代数里,矢量空间的一组元素中,若没有矢量可用有限个其他矢量的线性组合所表示,则称为线性无关或线性独立,反之称为线性相关。
(2)满足条件不同
线性表示是说对于一个向量,可以用n个向量线性来表示,这n个向量的系数为任意整数x= a1x1 + a2 x2 +…+anxn,a1…an为任意整数。
而线性相关是指n个向量 a1
x1+a2x2+…+anxn=0中,满足条件的a1…an不全为0。
(3)表示不同
线性表示是一个向量与一个向量组的关系。线性相关性是向量组内部向量之间的关系。线性相关的充分必要条件是向量组中至少有一个向量可由其余向量线性表示。
11、线性相关的充分条件:
(1)向量组含有零向量或成比例的向量必相关
(2)部分相关,则整体相关
(3)高维相关,则低维相关
(4)以少表多,多必相关
一个零向量必相关,一个非零向量必无关
★推论:任意n+1个n维向量一定线性相关(因为秩小于n+1)
这块的计算部分在b站听永乐大帝讲了,分清楚方程组求解是(方程组有解→求得结果的交集还是最少有一个解求的结果的并集)好像也不是这块的内容……真的感觉好多容易搞混,希望以后可以把题目放上来
12、线性无关的充要条件
向量组α1,α2,…,αs 线性无关
(1)←→任意向量均不能由其余向量线性表示;
(2)←→齐次方程(α1,α2,…,αs)(x1,x2,…,xs)T=0只有零解
(3)←→r(α1,α2,…,αs)=s
特别地,n个n维向量α1,α2,…,αn 线性无关
←→r(α1,α2,…,αn)=n ←→|α1,α2,…,αn |≠0 ←→矩阵可逆
13、线性无关的充分条件:
(1)整体无关,部分无关
(2)低维无关,高维无关
(3)正交的非零向量组线性无关
(4)不同特征值的特征向量无关
14、线性相关、线性无关判定
(1)定义法
★(2)秩(初等变换不改变秩):若小于阶数,线性相关;若等于阶数,线性无关
也可以用行列式来算,如果向量组中含有未知数,题目要求向量组线性相关,就令行列式为0然后进行运算,因式分解后得出未知数的取值
初等行变换不改变矩阵列向量组的线性关系
① 不管原向量是行或列,均按列构成矩阵
② 只做初等行变换化为行简化阶梯型
③ 首非零元所在的列,做极大无关组
④ 其余向量表示数直接写出
(四)极大线性无关组与向量组的秩
15、极大线性无关组不唯一
16、向量组的秩:极大无关组中向量的个数成为向量组的秩
对比:矩阵的秩:非零子式的最高阶数
★注:向量组α1,α2,…,αs 的秩与矩阵A=(α1,α2,…,αs)的秩相等
★16、极大线性无关组的求法
(1)α1,α2,…,αs 为抽象的:定义法
(2)α1,α2,…,αs 为数字的:
(α1,α2,…,αs)→初等行变换→阶梯型矩阵↓
则每行第一个非零的数对应的列向量构成极大无关组
给出一组向量,求这个向量组的秩和一个极大无关组,先把他们写在一起当成行列式进行运算,为了将其余向量用该极大无关组线性表示,所以要化成最简行阶梯型(直接把1所在行对应的数相加就是了)。然后就可以看出秩和极大无关组。
(五)向量空间
17、基(就是极大线性无关组)变换公式:
若α1,α2,…,αn 与β1,β2,…,βn 是n维向量空间V的两组基,则基变换公式为(β1,β2,…,βn)=(α1,α2,…,αn)Cn×n(起点的基是在过度矩阵的左边!!)
其中,C是从基α1,α2,…,αn 到β1,β2,…,βn 的过渡矩阵。
C=(α1,α2,…,αn)-1(β1,β2,…,βn)
这里千万不要看反了!!!惨痛教训!看清楚从哪个到哪个
18、坐标变换公式:
向量γ在基α1,α2,…,αn与基β1,β2,…,βn 的坐标分别为x=(x1,x2,…,xn)T,y=(y1,y2,…,yn)T,,即γ=x1α1 + x2α2 + … +xnαn =y1β1 + y2β2 + … +ynβn,则坐标变换公式为x=Cy或y=C-1x。其中,C是从基α1,α2,…,αn 到β1,β2,…,βn 的过渡矩阵。C=(α1,α2,…,αn)-1(β1,β2,…,βn)

线性方程组

(一)方程组的表达形与解向量
1、解的形式:
(1)一般形式
(2)矩阵形式:Ax=b;
(3)向量形式:A=(α1,α2,…,αn)
方程组相容的意思就是方程组有解。
2、解的定义:
若η=(c1,c2,…,cn)T满足方程组Ax=b,即Aη=b,称η是Ax=b的一个解(向量)
(二)解的判定与性质
3、齐次方程组:
(1)只有零解←→r(A)=n(n为A的列数或是未知数x的个数)(就是列向量线性无关的意思!)
(2)有非零解←→r(A)<n
齐次方程组的基础解系是解向量空间的最大无关组
如果题目给你未知数问你如何判断零解,就用秩来判断
4、非齐次方程组:(n是未知量的个数)
(1)无解←→r(A)(系数矩阵)<r(A|b)(增广矩阵)←→r(A)=r(A)-1
(2)唯一解←→r(A)=r(A|b)=n(满秩)
(3)无穷多解←→r(A)=r(A|b)<n(系数矩阵等于增广矩阵但不满秩)
先算把系数矩阵的行列式算出来,根据题目条件判断它是否要令其为0,一般会算出来两个数。
如果是唯一解就是不等于0;剩下的就是行列式为0的情况(因为不满秩),把算出来的数带回去进行计算,看符合哪个的条件。
无解一般很容易看出来,只有最后一个系数是不是0,其他全是0,这是不合理的,自相矛盾了~
然后无穷多解的时候就先用s=n-r判断基础解系里面有几个解向量(自由变量),算出是几,就从化简完的向量组中取几组简单好算的整数解向量组成基础解系,然后令未知数都为零算出特解,最后记得在基础解系前面乘上k,然后加上特解最后的答案就是通解了。
然后带入之后可能也会进入齐次或者是非齐次分支的判断。
5、解的性质:
(1)若ξ1,ξ2是Ax=0的解,则k1ξ1+k2ξ2是Ax=0的解(k为任意常数)
(2)若ξ是Ax=0的解(基础解系),η是Ax=b的解(特解),则ξ+η是Ax=b的解(通解)
(3)若η1,η2是Ax=b的解,则η1-η2是Ax=0的解
❤可以结合博客里的另外一篇的例题那篇理解哼哼啊啊啊啊啊
(三)基础解系
6、基础解系定义:
(1)ξ1,ξ2,…,ξs 是Ax=0的解
(2)ξ1,ξ2,…,ξs 线性相关
(3)Ax=0的所有解均可由其线性表示
→基础解系即所有解的极大无关组
注:基础解系不唯一。
任意n-r(A)个线性无关的解均可作为基础解系。(s=n-r)
★7、重要结论:(证明也很重要)
设A施m×n阶矩阵,B是n×s阶矩阵,AB=O
(1)B的列向量均为方程Ax=0的解
(2)r(A)+r(B)≤n(第2章,秩)
8、总结:基础解系的求法
(1)A为抽象的:由定义或性质凑n-r(A)个线性无关的解
(2)A为数字的:A→初等行变换→阶梯型
自由未知量分别取1,0,0;0,1,0;0,0,1(因为他们线性无关还好算!);代入解得非自由未知量得到基础解系
(四)解的结构(通解)
9、齐次线性方程组的通解(所有解)
设r(A)=r,ξ1,ξ2,…,ξn-r 为Ax=0的基础解系,
则Ax=0的通解为k1η1+k2η2+…+kn-rηn-r (其中k1,k2,…,kn-r为任意常数)
10、非齐次线性方程组的通解
设r(A)=r,ξ1,ξ2,…,ξn-r 为Ax=0的基础解系,η为Ax=b的特解,
则Ax=b的通解为η+ k1η1+k2η2+…+kn-rηn-r (其中k1,k2,…,kn-r为任意常数)
非齐次线性方程组的解的差是其导出组(将非齐次线性方程组右端的常数项换为零得到的齐次线性方程组)的解
齐次线性方程组的解的线性组合仍是解向量。
非齐次线性方程的解和导出组的解相加仍是非齐次线性方程组的解。
很多个解向量表示出基础解系(一个基础解系中有多少解向量就看s=n-r),解向量之间线性无关。
(五)公共解与同解
11、公共解定义:
如果α既是方程组Ax=0的解,又是方程组Bx=0的解,则称α为其公共解
联立两个方程组,新方程组的解就是公共解
12、非零公共解的充要条件:
方程组Ax=0与Bx=0有非零公共解←→ 图片1
有非零解←→ 图片2
13、重要结论(需要掌握证明)
(1)设A是m×n阶矩阵,则齐次方程ATAx=0与Ax=0同解,r(ATA)=r(A)
(2)设A是m×n阶矩阵,r(A)=n,B是n×s阶矩阵,则齐次方程ABx=0与Bx=0同解,r(AB)=r(B)

特征值与特征向量

(一)矩阵的特征值与特征向量
1、特征值、特征向量的定义:
设A为n阶矩阵,如果存在数λ及非零列向量α,使(λE-A)α=0,则λ是A的特征值;使得Aα=λα,称α是矩阵A属于特征值λ的特征向量。
2、特征多项式、特征方程的定义:
|λE-A|称为矩阵A的特征多项式(λ的n次多项式)。
|λE-A |=0称为矩阵A的特征方程(λ的n次方程)。
① λ只在主对角线存在
② A所有的元素都取相反数
一开始的时候一定不要算错了!!
注:特征方程可以写为|A-λE|=0
3、重要结论:
(1)若α为齐次方程Ax=0的非零解,则Aα=0·α,即α为矩阵A特征值λ=0的特征向量
(2)A的各行元素和为k,则(1,1,…,1)T为特征值为k的特征向量。
(3)上(下)三角或主对角的矩阵的特征值为主对角线各元素。
△4、总结:特征值与特征向量的求法
(1)A为抽象的:由定义或性质凑
(2)A为数字的:由特征方程法求解
(3)对角型矩阵的特征值就是主对角线上的n个元素
(4)特征值之和等于主对角线元素之和,所有特征值相乘(迹)等于A的行列式
5、特征方程法:
(1)解特征方程|λE-A|=0,得矩阵A的n个特征值λ1,λ2,…,λn
注:n次方程必须有n个根(可有多重根,写作λ1=λ2=…=λs=实数,不能省略)
(2)解齐次方程(λiE-A)=0,得属于特征值λi的线性无关的特征向量,即其基础解系(共n-r(λiE-A)个解)
永乐大帝的快速计算方法:直接最后一行不看!这里可以简化计算
6、性质:
(1)不同特征值的特征向量线性无关
(2)k重特征值(k重根)最多k个线性无关的特征向量
1≤n-r(λiE-A)≤ki
(3)设A的特征值为λ1,λ2,…,λn,则|A|=Πλi,Σλi=Σaii
(4)当r(A)=1,即A=αβT,其中α,β均为n维非零列向量,则A的特征值为λ1=Σaii=αTβ=βTα,λ2=…=λn=0
不确定的一个点(总之有时间可以多算算x)
如果题目问的是矩阵A的特征值及对应的特征向量,最后求出的特征向量要带k
如果题目要你求一个正交矩阵P使得P逆AP为对角矩阵,求出的特征向量就挑一个然后正交化就可以写出P,然后正交矩阵的逆矩阵就等于它的转置矩阵,然后进行运算得出P逆AP
如果题目求正交矩阵T和对角矩阵D就不用算那么多了,对角矩阵就是特征值写在主对角线上,其他位置都是0。
(二)相似矩阵
7、相似矩阵的定义:
设A、B均为n阶矩阵,如果存在可逆矩阵P使得B=P-1AP,称A与B相似,记作A~B
8、相似矩阵的性质
(1)若A与B相似,则f(A)与f(B)相似
(2)若A与B相似,B与C相似,则A与C相似(传递性)
(3)相似矩阵有相同的行列式、秩、特征多项式、特征方程、特征值、迹(即主对角线元素之和)
【推广】
(4)若A与B相似,则AB与BA相似,AT与BT相似,A-1与B-1相似,A与B也相似
(三)矩阵的相似对角化
9、相似对角化定义:
如果A与对角矩阵相似,即存在可逆矩阵P,使得P-1AP=Λ= 特征值在对角线上,其他地方都是0
称A可相似对角化。
注:Aαi=λiαi(αi≠0,由于P可逆),故P的每一列均为矩阵A的特征值λi的特征向量
10、相似对角化的充要条件
(1)A有n个线性无关的特征向量
(2)A的k重特征值有k个线性无关的特征向量
11、相似对角化的充分条件:
(1)A有n个不同的特征值(不同特征值的特征向量线性无关)
(2)A为实对称矩阵
12、重要结论:
(1)若A可相似对角化,则r(A)为非零特征值的个数,n-r(A)为零特征值的个数
(2)若A不可相似对角化,r(A)不一定为非零特征值的个数
(四)实对称矩阵
13、性质
(1)特征值全为实数
(2)不同特征值的特征向量正交(相乘为0)
(3)A可相似对角化,即存在可逆矩阵P使得P-1AP=Λ
(4)A可正交相似对角化,即存在正交矩阵Q,使得Q-1AQ=QTAQ=Λ
练习的时候写到的很有趣的一道题:
正交矩阵与其本身的转置矩阵乘积为E,行向量列向量都是单位向量(两两正交),特征值为±1
题目太妙了!考研数学3的
二次型(因为这次考试没考所以没有怎么看就没有整理 直接复制资料上的好了 救命啊这么重要的一章居然被草草的对待)
6 二次型
(一)二次型及其标准形
1、二次型:
(1)一般形式
(2)矩阵形式(常用)
2、标准形:
如果二次型只含平方项,即f(x1,x2,…,xn)=d1x12+d2x22+…+dnxn2
这样的二次型称为标准形(对角线)
3、二次型化为标准形的方法:
(1)配方法:
通过可逆线性变换x=Cy(C可逆),将二次型化为标准形。其中,可逆线性变换及标准形通过先配方再换元得到。
★(2)正交变换法:
通过正交变换x=Qy,将二次型化为标准形λ1y12+λ2y22+…+λnyn2
其中,λ1,λ2,…,λn 是A的n个特征值,Q为A的正交矩阵
注:正交矩阵Q不唯一,γi与λi 对应即可。
(二)惯性定理及规范形
4、定义:
正惯性指数:标准形中正平方项的个数称为正惯性指数,记为p;
负惯性指数:标准形中负平方项的个数称为负惯性指数,记为q;
规范形:f=z12+…zp2-zp+12-…-zp+q2称为二次型的规范形。
5、惯性定理:
二次型无论选取怎样的可逆线性变换为标准形,其正负惯性指数不变。
注:(1)由于正负惯性指数不变,所以规范形唯一。
(2)p=正特征值的个数,q=负特征值的个数,p+q=非零特征值的个数=r(A)
(三)合同矩阵
6、定义:
A、B均为n阶实对称矩阵,若存在可逆矩阵C,使得B=CTAC,称A与B合同
△7、总结:n阶实对称矩阵A、B的关系
(1)A、B相似(B=P-1AP)←→相同的特征值
(2)A、B合同(B=CTAC)←→相同的正负惯性指数←→相同的正负特征值的个数
(3)A、B等价(B=PAQ)←→r(A)=r(B)
注:实对称矩阵相似必合同,合同必等价
(四)正定二次型与正定矩阵
8、正定的定义
二次型xTAx,如果任意x≠0,恒有xTAx>0,则称二次型正定,并称实对称矩阵A是正定矩阵。
9、n元二次型xTAx正定充要条件:
(1)A的正惯性指数为n
(2)A与E合同,即存在可逆矩阵C,使得A=CTC或CTAC=E
(3)A的特征值均大于0
(4)A的顺序主子式均大于0(k阶顺序主子式为前k行前k列的行列式)
10、n元二次型xTAx正定必要条件:
(1)aii>0
(2)|A|>0
11、总结:二次型xTAx正定判定(大题)
(1)A为数字:顺序主子式均大于0
(2)A为抽象:①证A为实对称矩阵:AT=A;②再由定义或特征值判定
12、重要结论:
(1)若A是正定矩阵,则kA(k>0),Ak,AT,A-1,A*正定
(2)若A、B均为正定矩阵,则A+B正定

公式

(证明题那些感觉都从这里出)
1、行列式七大公式:
(1)|kA|=kn|A|(n行)(先数乘再求行列式,k朝外面提n次)
(2)|AB|=|A|·|B|
(3)|AT|=|A|(经常用)(行列式转置值不变)
(4)|A-1|=|A|-1=|A|分之一
(5)|A*|=|A|n-1次方(用到了)
(6)若A的特征值λ1、λ2、……λn,则 哼哼
(7)若A与B相似,则|A|=|B|
行列式是数,所以可以进行提出来的运算,但是注意行列式符号不要忘记了。
2、转置的性质(5条)
(1)(A+B)T=AT+BT(常见)
(2)(kA)T=kAT
(3)(AB)T=BTAT
(4)|A|T=|A|
(5)(AT)T=A
单位阵(只有对角线元素是1)的转置是它本身
3、逆的性质:(5条)
(1)(kA)-1=1/k·A-1 (k≠0)
(2)(AB)-1=B-1·A-1
(3)|A-1|=|A|-1
(4)(AT)-1=(A-1)T
(5)(A-1)-1=A
4、秩的性质:(7条)
(1)A为m×n阶矩阵,则r(A)≤min(m,n)
(2)r(A±B)≤r(A)±(B)
(3)r(AB)≤min{r(A),r(B)}
(4)r(kA)=r(A)(k≠0)
(5)r(A)=r(AC)(C是一个可逆矩阵)
(6)r(A)=r(AT)=r(ATA)=r(AAT)
矩阵转置秩不变
(7)设A是m×n阶矩阵,B是n×s矩阵,AB=O,则r(A)+r(B)≤n
5、伴随矩阵的性质:(8条)
(1)AA*=AA=|A|E(常用) → ★A=|A|A-1
(2)(kA)=kn-1A
(3)(AB)=BA*(常用)(数字从里面提出来就是倒数的形式)
(4)|A*|=|A|n-1(常用)
(5)(AT)=(A)T
(6)(A-1)=(A)-1=A|A|-1
(7)(A*)=|A| n-2·A
★(8)r(A
)=n (r(A)=n);
r(A*)=1 (r(A)=n-1);
r(A*)=0 (r(A)<n-1)
6、设α是矩阵A属于特征值λ的特征向量,则
A f(A) AT A-1 A* P-1AP(相似)
λ f(λ) λ λ-1 |A|λ-1 λ
α α / α α P-1α
常用的概念
1、Laplace展开式:(A是m阶矩阵,B是n阶矩阵),则拉普兰德(不是)
2、n阶(n≥2)范德蒙德行列式
很重要
3、施密特正交化
设α1,α2,α3 线性无关
(1)正交化(其实可以看成投影)
令β1=α1
第二步第三步
(2)单位化
最后一步
施密特正交化的作用是要求出能将二次型矩阵变成单位矩阵的那两个矩阵 D转置和D 而D的要求是这个D得是一个正交矩阵
正交矩阵的特点是矩阵内向量两两正交且长度为1 这也就是为什么施密特正交化的过程中又要正交化又要单位化
(在此多说一句 为什么二次型一定可以通过正交矩阵D来单位化呢 这个问题大学阶段不要求)
结论:如果你是在求将二次型单位化的过程中用到的那个正交矩阵D 是的 又要正交化又要单位化 缺一不可
如果你只是想根据一个矩阵随便搞出三个相互正交的向量来 没别的用途 那爱单位化不单位化 随你高兴
4、Aij=(-1)^(i+j)·Mij代数余子式和余子式的关系!
余子式:在n阶行列式中,划去元aij所在的第i行与第j列的元,剩下的元不改变原来的顺序所构成的n-1阶行列式称为元aij的余子式
代数余子式(异乘变零),按行展开按列放
转置矩阵 伴随矩阵(代数余子式组成的) 单位矩阵 初等矩阵 奇异矩阵(矩阵不满秩,方阵,行列式为0) 把这些的图都放出来!还有概念写在旁边~ 增广矩阵和系数矩阵 过渡矩阵和转移矩阵 正交矩阵
可逆矩阵可以表示为初等矩阵的乘积,而乘初等矩阵,矩阵的秩不会发生改变

考点

(瞎说的,上面的才都是考点)
组合系数 正交的性质 代数余子式 极大线性无关组 线性相关和无关 方程组(齐次/非齐次)
的解(唯一解/零解/无穷多解/无解)
再找到的资料基础上进行了添加 以下是直接删除的一些内容 体谅一下大冬天还打字的人吧呜呜
怎么才能将不是自己写的话变成自己的东西捏?真希望我可以在大学快点想清楚这些问题。
每一章需要你干什么呢?核心考点是什么?我并不是聪明的那类人,只能通过做题来加深自己对这些知识点的印象。总归是找出了一些规律,去网上找了一圈发现前辈早都把这些列成了复习资料!但是!我真的在做无用功吗!谁也说不清。
但好好继续做下去总归是有意义的~无论什么时候都请继续加油
运算的时候推论甚至比原公式更加常见!可以减少计算时间 但是要多记记背背!不想背……
啊,果然整篇下来毫无逻辑…

  • 38
    点赞
  • 158
    收藏
    觉得还不错? 一键收藏
  • 8
    评论
线性代数是一门研究向量空间和线性映射的数学学科,是计机科学中的一门重要课程。线性代数的基本概念包括向量、矩阵、线性方程组、线性变换等,这些概念在计机领域中广泛应用。 在计机科学中,线性代数有着广泛的应用。其中,矩阵和线性方程组是解决很多问题的重要工具。由于机器学习、人工智能和图形学等领域的快速发展,对线性代数的理解和应用变得尤为重要。 研究线性代数时,我们首先需要了解向量的基本概念和运规则。向量可以表示多维空间中的点或方向,可以进行加法、乘法等运。矩阵是由向量组成的矩形阵列,可以用来表示线性变换或解决线性方程组。线性方程组的解可以通过矩阵运求解,这在计机科学中非常常见。 线性映射是线性代数中的重要概念之一,它把一个向量空间映射到另一个向量空间,可以用来解决数据处理、图像处理等问题。线性映射的基本性质和运规则对于理解和应用线性代数都至关重要。 在线性代数的学习过程中,我们还需要学习特征值与特征向量、正交性、内积等概念。特征值和特征向量在很多问题中都起到非常重要的作用,如图像压缩、数据降维等。正交性则是矩阵和向量之间的重要关系,它在图形处理、信号处理等领域有着广泛的应用。 综上所述,线性代数在计机科学中扮演着至关重要的角色。通过对向量、矩阵、线性方程组和线性变换等基本概念的学习,我们可以更好地理解和应用线性代数知识,从而为计机科学领域的问题提供有效的解决方案。通过在CSDN上总结复习线性代数知识,可以帮助我们更好地理解这门学科,提高解决实际问题的能力。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值