《算法竞赛进阶指南》可达性统计

这篇博客介绍了如何利用拓扑排序和二进制压位来解决有向无环图中从每个点出发能够到达的点的数量的统计问题。在拓扑排序的数组中倒序遍历,结合bitset节省内存并避免判重,有效地计算了可达性。
摘要由CSDN通过智能技术生成

可达性统计

给定一张N个点M条边的有向无环图,分别统计从每个点出发能够到达的点的数量。

输入格式
第一行两个整数N,M,接下来M行每行两个整数x,y,表示从x到y的一条有向边。

输出格式
输出共N行,表示每个点能够到达的点的数量。

数据范围
1≤N,M≤30000
输入样例:
10 10
3 8
2 3
2 5
5 9
5 9
2 3
3 9
4 8
2 10
4 9
输出样例:
1
6
3
3
2
1
1
1
1
1

本题我们利用的方法主要是拓扑排序,以及二进制压位。

首先我们介绍拓扑排序:在已知的有向无环图中我们通过拓扑排序到一个拓扑排序数组中,使得在原来数据中的任意一条边在拓扑排序数组中都满足,边的起始点一定在末尾点的前面。

我们为什么要对原数据进行拓扑排序呢,是因为:我们当前点能到达点的个数一定是:当前点能直接到达的点的个数+这些点它们能到达的所有的点(然后又是一个循环)

因此我们得到拓扑排序的数组之后就可能倒序遍历拓扑数组,每次更新当前点能到达的个数就能更方便的计算出结果。

我们还提到要利用二进制压位,bitset,这是因为我们每个点都有可能到达任何一个点,如果开数组的话就是n*n=30000^2,内存会爆的,如果压倒一个二进制位:

bitset f[N],这不单单能节省内存,还由于在原数据中有重复的可能,而二进制压位相当于只能标记一次,省去了判重的问题。

#include <iostream>
#include <algorithm>
#include <queue>
#include <cstring>
#include <bitset>
using namespace std;
const int N=30010;
int h[N],e[N],ne[N],idx;//拓扑排序的需要用到的数组和变量
int d[N]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值