可达性统计
给定一张N个点M条边的有向无环图,分别统计从每个点出发能够到达的点的数量。
输入格式
第一行两个整数N,M,接下来M行每行两个整数x,y,表示从x到y的一条有向边。
输出格式
输出共N行,表示每个点能够到达的点的数量。
数据范围
1≤N,M≤30000
输入样例:
10 10
3 8
2 3
2 5
5 9
5 9
2 3
3 9
4 8
2 10
4 9
输出样例:
1
6
3
3
2
1
1
1
1
1
本题我们利用的方法主要是拓扑排序,以及二进制压位。
首先我们介绍拓扑排序:在已知的有向无环图中我们通过拓扑排序到一个拓扑排序数组中,使得在原来数据中的任意一条边在拓扑排序数组中都满足,边的起始点一定在末尾点的前面。
我们为什么要对原数据进行拓扑排序呢,是因为:我们当前点能到达点的个数一定是:当前点能直接到达的点的个数+这些点它们能到达的所有的点(然后又是一个循环)
因此我们得到拓扑排序的数组之后就可能倒序遍历拓扑数组,每次更新当前点能到达的个数就能更方便的计算出结果。
我们还提到要利用二进制压位,bitset,这是因为我们每个点都有可能到达任何一个点,如果开数组的话就是n*n=30000^2,内存会爆的,如果压倒一个二进制位:
bitset f[N],这不单单能节省内存,还由于在原数据中有重复的可能,而二进制压位相当于只能标记一次,省去了判重的问题。
#include <iostream>
#include <algorithm>
#include <queue>
#include <cstring>
#include <bitset>
using namespace std;
const int N=30010;
int h[N],e[N],ne[N],idx;//拓扑排序的需要用到的数组和变量
int d[N]