题目:跳跃游戏 II
给定一个长度为 n
的 0 索引整数数组 nums
。初始位置为 nums[0]
。
每个元素 nums[i]
表示从索引 i
向前跳转的最大长度。换句话说,如果你在 nums[i]
处,你可以跳转到任意 nums[i + j]
处:
0 <= j <= nums[i]
i + j < n
返回到达nums[n - 1]
的最小跳跃次数。生成的测试用例可以到达nums[n - 1]
。
示例 1:
输入: nums = [2,3,1,1,4]
输出: 2
解释: 跳到最后一个位置的最小跳跃数是2
。
从下标为 0 跳到下标为 1 的位置,跳1
步,然后跳3
步到达数组的最后一个位置。
示例 2:
输入: nums = [2,3,0,1,4]
输出: 2
解题思路
该问题可以使用贪心算法策略,即每次都在当前跳跃范围内尽可能地找到能跳到的最远位置,这样我们总是在用最少的跳跃次数去覆盖更多的位置。
步骤:
- 定义跳跃的范围: 我们在当前位置定义一个“当前跳跃范围”(currentEnd),表示我们这一跳最多能到达的位置。
- 找到最远跳跃位置: 在当前跳跃范围内,我们尝试找到能够跳到的最远位置(farthest),这个位置是当前跳跃范围中的所有位置能跳跃到的最远点。
- 更新跳跃: 当我们遍历到当前跳跃范围的末尾时,我们就必须进行一次跳跃,并把跳跃的次数加一,同时更新跳跃的范围为我们刚才找到的最远位置。
- 提前退出: 如果在某次跳跃后,我们发现我们已经可以到达或超过最后一个位置,就可以立即停止并返回跳跃次数了。
时间复杂度:O(n)
空间复杂度:O(1)
代码
func jump(nums []int) int {
n := len(nums)
// 能到达的最远位置, 跳跃次数, 当前跳跃范围
farthest, jumps, currentEnd := 0, 0, 0
// 遍历到倒数第二个位置,因为最后一个位置不需要再跳跃
for i := 0; i < n-1; i++ {
// 更新能到达的最远位置
farthest = max(farthest, i+nums[i])
// 如果到达了当前跳跃的边界,进行跳跃并更新边界
if i == currentEnd {
jumps++ // 增加跳跃次数
currentEnd = farthest // 更新下一次跳跃的边界
// 提前检查是否能到达最后一个位置,优化性能
if currentEnd >= n-1 {
break
}
}
}
return jumps
}
// 辅助函数:返回两个数中的较大值
func max(a, b int) int {
if a > b {
return a
}
return b
}