1047. 糖果 dp

  1. 糖果
    题目
    提交记录
    讨论
    题解
    视频讲解

由于在维护世界和平的事务中做出巨大贡献,Dzx被赠予糖果公司2010年5月23日当天无限量糖果免费优惠券。

在这一天,Dzx可以从糖果公司的 N 件产品中任意选择若干件带回家享用。

糖果公司的 N 件产品每件都包含数量不同的糖果。

Dzx希望他选择的产品包含的糖果总数是 K 的整数倍,这样他才能平均地将糖果分给帮助他维护世界和平的伙伴们。

当然,在满足这一条件的基础上,糖果总数越多越好。

Dzx最多能带走多少糖果呢?

注意:Dzx只能将糖果公司的产品整件带走。

输入格式
第一行包含两个整数 N 和 K。

以下 N 行每行 1 个整数,表示糖果公司该件产品中包含的糖果数目,不超过 1000000。

输出格式
符合要求的最多能达到的糖果总数,如果不能达到 K 的倍数这一要求,输出 0。

数据范围
1≤N≤100,
1≤K≤100,

输入样例:
5 7
1
2
3
4
5
输出样例:
14
样例解释
Dzx的选择是2+3+4+5=14,这样糖果总数是7的倍数,并且是总数最多的选择。

思路

f[i][j]表示从前i个物品中选取任意件物品的和对k的余数为j的方案中,和的最大值。
递推方程:选或者不选,不选就前i个余数为j,选就是前i个余数为j-w[i]

#include <bits/stdc++.h>

using namespace std;
//using namespace std;
const int N=101,M=101;

int f[N][M];
int w[N];
int main(){
    
    int n,k;
    cin>>n>>k;
    for(int i=1;i<=n;++i){
        cin>>w[i];
    }
    memset(f,-0x3f,sizeof f);
    f[0][0]=0;
    for(int i=1;i<=n;++i){
        for(int j=0;j<k;++j){
            f[i][j]=max(f[i-1][j],f[i-1][(j+k-w[i]%k)%k]+w[i]);
        }
    }
    cout<<f[n][0]<<endl;
    return 0;
}
### 回答1: 题目:ZZULIOJ 答案 1148 吃糖果 答案 1148 "吃糖果" 是一个被称为 ZZULIOJ 的在线程序设计竞赛平台上的一道题目。下面是关于该题目的题意和解题思路: 题意:小明买了一包糖果,他共有 n 颗糖果,他每次可以从中任选两颗糖果,然后吃掉较大的那颗,并将剩下的那颗糖果放回包中。小明想知道他吃掉所有糖果需要几次。你能帮助他计算出来吗? 解题思路:这是一道典型的数学问题,是关于数学归纳法要求的一道问题。我们可以使用递归的方法解决这个问题。 首先,我们可以观察到以下几个规律: 1. 如果有 2 颗糖果,小明只需要吃一次就能吃光所有的糖果。 2. 如果有 3 颗糖果,小明第一次吃掉两颗较大的糖果,然后剩下一颗,小明第二次吃掉这颗糖果,所以小明需要吃两次才能吃光所有的糖果。 3. 如果有 4 颗糖果,小明第一次吃掉两颗较大的糖果,然后剩下两颗。对于剩下的两颗糖果可以看作是一个新的问题,因此小明需要再吃掉两次才能吃光所有的糖果。 4. 如果有 5 颗糖果,小明第一次吃掉两颗较大的糖果,然后剩下三颗。对于剩下的三颗糖果可以看作是一个新的问题,因此小明需要再吃掉两次才能吃光所有的糖果。 由上面的规律,我们可以总结出以下的公式: 如果 n 为奇数,那么小明需要吃的次数为 n/2 + 1。 如果 n 为偶数,那么小明需要吃的次数为 n/2。 通过递归的思想,我们可以用时间复杂度为 O(logn) 的方法解决这个问题。我们可以先判断 n 的奇偶性,然后根据对应的公式计算出最终的结果。 以上就是对于题目 "ZZULIOJ 答案 1148 吃糖果" 的回答。希望能对您有所帮助! ### 回答2: 1148题是关于"吃糖果"的问题。在这个问题中,可能存在多种解法。以下是一个可能的解答: 这道题目假设有N个糖果,每次可以从中任选1个或多个吃掉,每次吃掉的糖果数量不能超过前一次吃掉的数量的两倍。问最多能吃几颗糖果。 我们可以使用动态规划的思想来解决这个问题。设dp[i]表示吃掉前i个糖果所能吃到的最多糖果的数量。 首先,如果只有一个糖果,那么dp[1]=1。 对于第i个糖果,有两种情况: 1. 如果我们选择吃掉第i个糖果,那么可以得到dp[i]=dp[i-1]+1。 2. 如果我们不吃第i个糖果,那么dp[i]=dp[i-1]。 因为每次吃掉的糖果数量不能超过前一次吃掉的数量的两倍,所以上述两种情况中一种会使得选择后得到的糖果数量更多。 综上所述,可以得到状态转移方程: dp[i]=max(dp[i-1]+1, dp[i-1]) 通过动态规划计算,最终可以得到dp[N]即为最多能吃到的糖果的数量。 总结:答案1148题的最优解是通过动态规划求解,最多能吃到dp[N]颗糖果。 ### 回答3: 题目:zzulioj答案1148吃糖果 答:题目中的zzulioj指的是一个在线程序设计竞赛平台,而答案1148则是该平台上一道题目的编号。 该题目的内容为:小明有一颗袋子里装有若干颗糖果,其中一颗糖果的味道与其余所有糖果不同。小明只能选择某一颗糖果进行尝试,若尝试的糖果味道特殊,则输出该糖果在袋子中的序号;若尝试的糖果味道与其他糖果相同,则输出"不好意思,您选择的糖果不是特殊的哦!"。 考虑这个问题,我们可以使用二分查找算法来进行解答。首先,我们将袋子中所有糖果分成两半,然后尝试其中一半的糖果。如果尝试的糖果味道特殊,则可以确定特殊糖果在这一半中,反之则在另一半中。接着,我们再将含有特殊糖果的那半再次划分为两半,进行尝试,以此类推,直到找到特殊糖果为止。 以下是使用二分查找算法的伪代码如下: ```python def find_special_candy(candies): left = 0 right = len(candies)-1 while left <= right: mid = (left + right) // 2 if candies[mid] == "特殊糖果": return mid elif candies[mid] < "特殊糖果": left = mid + 1 else: right = mid - 1 return "不好意思,您选择的糖果不是特殊的哦!" candies = ['香橙', '苹果', '樱桃', '葡萄', '特殊糖果', '蓝莓', '草莓'] result = find_special_candy(candies) print(f"特殊糖果在袋子中的序号为:{result}") ``` 以上代码中,我们通过比较尝试的糖果与"特殊糖果"的大小关系来判断特殊糖果所在的范围,并对范围进行不断缩小直到找到特殊糖果。 希望这个答案能对你有所帮助!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wow_awsl_qwq

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值