杨辉三角与hanoi

最近在准备复试,复习C语言过程中需要弄明白或再思考一些以前没有搞定的问题,其中前两百页我认为比较难的可以说有“杨辉三角”、“魔方阵”、“hanoi”。当然hanoi实现起来较为简单。


杨辉三角


#include <stdio.h>
#include <stdlib.h>
int main()
{
    int s = 1, h;                    // 数值和高度
    int i, j;                        // 循环计数
    scanf("%d", &h);                 // 输入层数
    printf("1\n");                   // 输出第一个 1
    for (i = 2; i <= h; s = 1, i++)         // 行数 i 从 2 到层高
    {
        printf("1 ");                // 第一个 1
        for (j = 1; j <= i - 2; j++) // 列位置 j 绕过第一个直接开始循环
            //printf("%d ", (s = (i - j) / j * s));
            printf("%d ", (s = (i - j) * s / j));
        printf("1\n");               // 最后一个 1,换行
    }
    getchar();                       // 暂停等待
    return 0;
}

这个算法的精髓就在于printf之中的式子,也是我弄不明白的地方,不过我也不着急,这个先给予简单的记录,不细说。
由杨辉三角的特性可知,每一个数都是头上面两个数字的和。第一行和每一行两边都是1,这也确定了编写代码的大框架。
即第一行是1,每一行开始结束是1,而中间数字的大小由算法决定,由于是头上两个数字的和我找不到合适的算法,如图是百度的代码。一会我会补全解释,先向下写。


Hanoi


#include <stdio.h>
//Gao背写hanoi
int main(void) { 
    int p=3;
    //char a,b,c;
	void hanoi(int m,char one,char two,char three);
	//printf("Please enter the num of pan(s):");
	//scanf("%d",&p);
	printf("%d pans' hanoi progress is:\n",p);
	hanoi(p,'A','B','C');
	return 0;
}
void hanoi(int m,char one,char two,char three)
{
    void move(char p1,char p2);
    if(m==1)
    {
        move(one,three);
    }
    else
    {
        hanoi(m-1,one,three,two);
        move(one,three);
        hanoi(m-1,two,one,three);
    }
}
void move(char A,char B)
{
    printf("%c->%c\n",A,B);
}
  1. 原来太过于纠结过程,想一想真是一个痛苦的时期。Hanoi内核是函数的递归思想,不过其中穿插着实参形参的交换,就让这个逻辑不是那么清楚。按照书上的说法要想全部从A移到C,就要让A上除了最大的圆盘全部到B,即总数-1个圆盘,当然总数-1个圆盘也可以使用这个递归思想,总数-2需要先借助B到C。当然,目的是让总数-1圆盘一起到B。这样一直倒推到最上面的圆盘,就可以知道小圆盘1⃣️直接移就可以了。

  2. 这样说的时候我当时可能明白了,不过我一会又懵了,因为我没有在脑袋里推这个过程,人的脑袋也不可能推导这个过程,因为在圆盘数量大的时候推导这个过程工作量是十分庞大的。所以我决定将这个工作交给我的R7-4800,AMDyes?

  3. 容易让人混乱的就是在递归过程交替的时候,实参传入的模型还是ABC,而从未改变顺序,名字依旧是原来的名字。可以这样理解,每一次调用这个hanoi函数都是将要进行推导的圆盘全摘下来按照原顺序放在模型ABC上,利用ABC这个模型来代替我们复杂的推导过程。这样,只需要套入一个模型,不一样的只是名字,就可以让bot帮我们完成任务。

魔方矩阵

**

(1) 将1放在第一行中间一列;
(2) 从2开始直到n×n止各数依次按下列规则存放:
按 45°方向行走,如向右上
每一个数存放的行比前一个数的行数减1,列数加1
(3) 如果行列范围超出矩阵范围,则回绕。
例如1在第1行,则2应放在最下一行,列数同样减1;
(4) 如果按上面规则确定的位置上已有数,或上一个数是第1行第n列时,
则把下一个数放在上一个数的下面。

—N为4的倍数时

采用对称元素交换法。
首先把数1到n×n按从上至下,从左到右顺序填入矩阵
然后将方阵的所有4×4子方阵中的两对角线上的数关于大方阵中心作中心对称交换(注意是各4×4子方阵对角线上的数), 即a(i,j)与a(n+1-i,n+1-j)交换,所有其它位置上的数不变。(或者将对角线不变,其它位置对称交换也可)

—N 为其它偶数时

当n为非4倍数的偶数(即4n+2形)时:首先把大方阵分解为4个奇数(2m+1阶)子方阵。
按上述奇数阶魔方给分解的4个子方阵对应赋值
上左子阵最小(i),下右子阵次小(i+v),下左子阵最大(i+3v),上右子阵次大(i+2v)
即4个子方阵对应元素相差v,其中v=n*n/4
四个子矩阵由小到大排列方式为 ① ③ ④ ②
然后作相应的元素交换:a(i,j)与a(i+u,j)在同一列做对应交换(j<t或j>n-t+2),
注意其中j可以取零。
a(t-1,0)与a(t+u-1,0);a(t-1,t-1)与a(t+u-1,t-1)两对元素交换
其中u=n/2,t=(n+2)/4 上述交换使每行每列与两对角线上元素之和相等。

说实话我拉了,杨辉好狠,么事研究这些东西,无语了。这个算法设计的我晕了,硬要我编能编出来,可是这个算法设计我真想不出来。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值