Tensorflow 性能优化策略算法

本文介绍了四种深度学习训练过程中的优化技巧:1.加入动量(momentum),修正梯度更新方向;2.采用dropout技术,随机取消部分权重的反向传播更新;3.设置动态学习率,调整步长;4.利用正则化方法防止过拟合。这些方法有助于提升模型性能。


1. 加入动量,momentum,对梯度更新的方向进行修正


无动量


在这里插入图片描述


2. dropout,随机取消一些反向传播更新的权重

在这里插入图片描述


3. 设置步长——动态改变学习率

在这里插入图片描述


在这里插入图片描述


4. 过拟合——正则化

在这里插入图片描述


总结:

这些实际都是数学理论得出的优化方法,即算法。然后才有相应的实现,总结:框架只是一个工具,更重要的是,我们对算法本身的理解,这才是算法开发者最重要的能力。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值