C++——AVL树超详细介绍

AVL树:

二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下。

因此,两位俄罗斯的数学家G.M.Adelson-Velskii和E.M.Landis在1962年 发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之 差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度。

一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:

  1. 它的左右子树都是AVL树
  2. 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)

如果一棵二叉搜索树是高度平衡的,它就是AVL树。如果它有n个结点,搜索时间复杂度O(log2 N )。

 AVL树节点的定义:

#include<stdlib.h>
#include<stdio.h>
#include<iostream>
using namespace std;


template<class T> 
struct AVLTreeNode {
	AVLTreeNode(const T& data) 
	:_pLeft(nullptr),
	 _pRight(nullptr),
	 _pParent(nullptr),
	 _data(data), 
	 _bf(0) 
	 {}
	 
        AVLTreeNode<T>* _pLeft;   // 该节点的左孩子
	AVLTreeNode<T>* _pRight;  // 该节点的右孩子
	AVLTreeNode<T>* _pParent; // 该节点的双亲 
	T _data;     
	int _bf;                  // 该节点的平衡因子
};

AVL树的插入:

AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。

那么AVL树的插入 过程可以分为两步:

  1. 按照二叉搜索树的方式插入新节点
  2. 调整节点的平衡因子

如果在一棵原本是平衡的AVL树中插入一个新节点,可能造成不平衡,此时必须调整树的结构,使之平衡化。

根据节点插入位置的不同,AVL树的旋转分为四种:

  1. 新节点插入较高左子树的左侧---左左:右单旋
  2. 新节点插入较高右子树的右侧---右右:左单旋
  3. 新节点插入较高左子树的右侧---左右:先左单旋再右单旋
  4. 新节点插入较高右子树的左侧---右左:先右单旋再左单旋 

左单旋示例图:

左单旋代码示例:

//左单旋的代码
	void RotateLeft(Node* parent) {
		Node* pSubR = pParent->right;
		Node* pSubRL = pSubR->left;
		
		pParent->right = pSubRL;
		if(pSubRL) {	//单支情况就不用更新
			pSubRL->parent = pParent;
		}
		
		pSubR->left = pParent;	
		//30的上面可能有双亲,就是要更新50的双亲
		Node* pPParent = pParent->parent;
		pParent->parent = pSubR;
		pSubR->parent = pPParent;
		
		//让parent原来的双亲指向pSubR
		if(pPParent == nullptr) {
			_pRoot = pSubR;
		}
		else if(pPParent->left == parent) {
			pPParent->left = pSubR;
		}
		else {
			pPParent->right = pSubR;
		}
	}

右左双旋的小演示:

AVL树其他完整代码:

#include<stdlib.h>
#include<stdio.h>
#include<iostream>
using namespace std;


template<class T> 
struct AVLTreeNode {
	AVLTreeNode(const T& data) 
	:_pLeft(nullptr),
	 _pRight(nullptr),
	 _pParent(nullptr),
	 _data(data), 
	 _bf(0) 
	 {}
	 
    AVLTreeNode<T>* _pLeft;   // 该节点的左孩子
	AVLTreeNode<T>* _pRight;  // 该节点的右孩子
	AVLTreeNode<T>* _pParent; // 该节点的双亲 
	T _data;     
	int _bf;                  // 该节点的平衡因子
};

template<class T> 
class AVLTree {
	typedef AVLTreeNode<T> Node;
	
public:
	AVLTree()
	:_pRoot(nullptr);
	{}
	
	bool Insert(const T& data) {
		//空树
		if(_pRoot ==nullptr) {
			_pRoot =new Node(data);
			return true;
		}
		//非空树
		//1.找到插入位置
		Node* pCur=_pRoot;
		Node* pParent = nullptr;
		while(pCur) {
			pParent = pCur;
			else if(data < pCur->_data)
				pCur=pCur->_pLeft;
			else
				pCur=pCur->_pRight;
			else
				return false;
		}
		//2.插入数据
		pCur = new Node(data);
		if(data < pParent->_data) {
			pParent->_pLeft = pCur;
		}
		else 
			pParent->_pRight = pCur;
		pCur->_pParent = pParent;
		
		//可能会不满足平衡因子
		while(pParent) {
			//必须检测平衡因子
		//新节点肯定插入在双亲的左侧或者右侧,parent的平衡因子 - 1 就好了。
		//右子树高度 - 左子树高度
		//所有叶子节点高度0
		if(pCur == pParent->_pLeft)
			pParent->_bf--;	//左侧减1
		else
			pParent->_bf++;	//右侧加1
		
			if(pParent->_bf == 0) {
				return true;	//高度没变
			}
			else (pParent->_bf == -1 || pParent->_bf == 1) {
				pCur = pParent;
				pParent = pCur->_pParent;
			}
			else {
				//双亲平衡因子不满足了
				if(pPParent->_bf == 2) {
					//右子树高
					if(pCur->_bf == 1) {
						RotateLeft(pParent);	//左单旋
					}
					else {
						//异号——右左双旋
						_RorateRL(pParent);
					}
				}
				else {
					//左子树高
					if(pCur->_bf == -1) {
						RotateRight(pParent);	//右单旋
					}
					else {
						//异号——左右双旋
						_RorateLR(pParent);
					}									
				}	
			}
			break;
		}
		return true;
	}
	
	void Inorder() {
		_Inorder(_pRoot);
	}
	
	//检测平衡因子
	bool IsValiAVLTree() {
		return _IsValiAVLTree(_pRoot);
	}
		
protected:

	bool _IsValiAVLTree(Node* pRoot) {
		if(pRoot == nullptr) {
			return ture;
		}
		
		int left = _Height(pRoot->_pLeft);
		int right = _Height(pRoot->_pRight);
		
		if(pRoot->_bf >= -1 && pRoot->_bf <= 1 && pRoot->_bf ==right - left) {
			return ture;
		}
		else {
			return false;
		}
	}

	//求高度
	int _Height((Node* pRoot) {
		if(pRoot == nullptr) {
			return 0;
		}
		int left =_Height(pRoot->_pLeft);
		int right = _Height(pRoot->_pRight);
		return left>right?left + 1 : right + 1;
	}


	//左单旋的代码
	void RotateLeft(Node* parent) {
		Node* pSubR = pParent->right;
		Node* pSubRL = pSubR->left;
		
		pParent->right = pSubRL;
		if(pSubRL) {	//单支情况就不用更新
			pSubRL->parent = pParent;
		}
		
		pSubR->left = pParent;	
		//30的上面可能有双亲,就是要更新50的双亲
		Node* pPParent = pParent->parent;
		pParent->parent = pSubR;
		pSubR->parent = pPParent;
		
		//让parent原来的双亲指向pSubR
		if(pPParent == nullptr) {
			_pRoot = pSubR;
		}
		else if(pPParent->left == parent) {
			pPParent->left = pSubR;
		}
		else {
			pPParent->right = pSubR;
		}
	}

	void _RorateRL(Node* pParent) {	//右左双旋
		RotateRight(pParent->_pRight);
		RotateLeft(pParent);
	}

	void _RorateLR(Node* pParent) {	//做头双旋
		RotateLeft(pParent->_pRight);
		RotateRight(pParent);
	}

	void _Inorder(Node* pRoot) {
		if(pRoot) {
			_InOrder(pRoot->_pLeft);
			cout<< pRoot->_data <<" ";
			_InOrder(pRoot->_pRight);
		}
	}

private:
	Node* _pRoot;
}

旋转总结:

假如以pParent为根的子树不平衡,即pParent的平衡因子为2或者-2,分以下情况考虑

1. pParent的平衡因子为2,说明pParent的右子树高,设pParent的右子树的根为pSubR

  • 当pSubR的平衡因子为1时,执行左单旋
  • 当pSubR的平衡因子为-1时,执行右左双旋

2. pParent的平衡因子为-2,说明pParent的左子树高,设pParent的左子树的根为pSubL

  • 当pSubL的平衡因子为-1是,执行右单旋
  • 当pSubL的平衡因子为1时,执行左右双旋

旋转完成后,原pParent为根的子树个高度降低,已经平衡,不需要再向上更新。

AVL树的验证:

AVL树是在二叉搜索树的基础上加入了平衡性的限制,因此要验证AVL树,可以分两步:

1. 验证其为二叉搜索树

  • 如果中序遍历可得到一个有序的序列,就说明为二叉搜索树

2. 验证其为平衡树

  • 每个节点子树高度差的绝对值不超过1(注意节点中如果没有平衡因子)
  • 节点的平衡因子是否计算正确

AVL树的性能:

AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这样可以保证查询时高效的时间复杂度,但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如: 插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,有可能一直要让旋转持续到根的位置。

因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树, 但一个结构经常修改,就不太适合。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值