①dp数组定义:
dp[i] 代表前 i 个房子在满足条件下的能偷窃到的最高金额。
②问题情况:
如果将nums[i] 加入最终的结果中那么nums[i-1]将不能加入——>dp[i] = dp[i-2] + nums[i]
如果nums[i]可以偷但没有偷——>dp[i] = dp[i-1]
③dp数组的状态转换方程:
dp[i] = max(dp[i-2]+nums[i], dp[i-1])
④返回值:
dp[n-1]的值
⑤空间复杂度优化:
可以使用滚动数组优化到O(1)
在打家劫舍1的基础上假设nums是一个环形数组,首尾不能同时取。
①在打家劫舍1的条件下加入环的限制
②分析:重点分析头部和尾部
不偷头部的时候,尾部可以偷[1,n-1]
不偷尾部的时候,头部可以偷[0,n-2]
③两种情况分别使用打家劫舍1的算法然后求最大值。
打家劫舍2:
class Solution {
public int rob(int[] nums) {
int n = nums.length;
if(n == 1) return nums[0];
if(n == 2) return Math.max(nums[0], nums[1]);
return Math.max( dj(nums, 0, n-2), dj(nums, 1, n-1));
}
public int dj(int[] nums, int start, int end){
if(start == end) return nums[start];
int[] dp = new int[nums.length];
dp[start] = nums[start];
dp[start + 1] = Math.max(nums[start], nums[start + 1]);
for(int i = start + 2; i < end + 1; i++){
dp[i] = Math.max(dp[i-2] + nums[i], dp[i-1]);
}
return dp[end];
}
}