1、前缀和
前缀和是指某序列的前n项和,可以把它理解为数学上的数列的前n项和,而差分可以看成前缀和的逆运算。合理的使用前缀和与差分,可以将某些复杂的问题简单化。

2、前缀和算法有什么好处?
先来了解这样一个问题:
输入一个长度为n的整数序列。接下来再输入m个询问,每个询问输入一对l, r。对于每个询问,输出原序列中从第l个数到第r个数的和。
我们很容易想出暴力解法,遍历区间求和。
代码如下
const int N = 1e5 + 10;
int a[N];
int n,m;
scanf("%d%d", &n, &m);
for(int i = 1; i <= n; i++) scanf("%d", &a[i]);
while(m--)
{
int l, r;
int sum = 0;
scanf("%d%d", &l, &r);
for(int i = l; i <= r; i++)
{
sum += a[i];
}
printf("%d\n",sum);
}
这样的时间复杂度为O(n * m),如果n和m的数据量稍微大一点就有可能超时,而我们如果使用前缀和的方法来做的话就能够将时间复杂度降到O(n + m),大大提高了运算效率。
具体做法:
首先做一个预处理,定义一个sum[]数组,sum[i]代表a数组中前i个数的和。
求前缀和运算:
const int N = 1e5 + 10;
int sum[N], a[N]; //sum[i]=a[1]+a[2]+a[3].....a[i];
for(int i = 1;i <= n; i++)
{
sum[i] = sum[i - 1] + a[i];
}
然后查询操作:
scanf("%d%d",&l,&r);
printf("%d\n", sum[r] - sum[l - 1]);
对于每次查询,只需执行sum[r] - sum[l - 1] ,时间复杂度为O(1)
原理
sum[r] = a[1] + a[2] + a[3] + a[l-1] + a[l] + a[l + 1] ...... a[r];
sum[l - 1] = a[1] + a[2] + a[3] + a[l - 1];
sum[r] - sum[l - 1] = a[l] + a[l + 1] + ......+ a[r];
图解

这样,对于每个询问,只需要执行 sum[r] - sum[l - 1]。输出原序列中从第l个数到第r个数的和的时间复杂度变成了O(1)。

代码实现
#include <iostream>
using namespace std;
const int N = 100010;
int n, m;
int a[N], s[N];
int main()
{
scanf("%d%d", &n, &m);
for(int i = 1; i <= n; i ++) scanf("%d", &a[i]);
// 初始化前缀和数组
for(int i = 1; i <= n; i ++) s[i] = s[i - 1] + a[i];
while(m --)
{
int l, r;
scanf("%d%d", &l, &r);
printf("%d\n", s[r] - s[l - 1]);
}
return 0;
}
3、二维前缀和
如果数组变成了二维数组怎么办呢?
先给出问题:
输入一个n行m列的整数矩阵,再输入q个询问,每个询问包含四个整数x1, y1, x2, y2,表示一个子矩阵的左上角坐标和右下角坐标。对于每个询问输出子矩阵中所有数的和。
同一维前缀和一样,我们先来定义一个二维数组s[][] , s[i][j] 表示二维数组中,左上角(1, 1)到右下角(i, j)所包围的矩阵元素的和。接下来推导二维前缀和的公式。
先看一张图:

紫色面积是指(1, 1)左上角到(i, j - 1)右下角的矩形面积, 绿色面积是指(1, 1)左上角到(i - 1, j )右下角的矩形面积。每一个颜色的矩形面积都代表了它所包围元素的和。

从图中我们很容易看出,整个外围蓝色矩形面积s[i][j] = 绿色面积s[i - 1][j] + 紫色面积s[i][j - 1] - 重复加的红色的面积s[i - 1][j - 1] + 小方块的面积a[i][j];
因此得出二维前缀和预处理公式
s[i][j] = s[i - 1][j] + s[i][j - 1 ] + a[i] [j] - s[i - 1][j - 1]
接下来回归问题去求以(x1,y1)为左上角和以(x2,y2)为右下角的矩阵的元素的和。
如图:

紫色面积是指 (1, 1)左上角到(x1 - 1, y2)右下角的矩形面积 ,黄色面积是指(1, 1)左上角到(x2, y1 - 1)右下角的矩形面积;
不难推出:

绿色矩形的面积 = 整个外围面积s[x2, y2] - 黄色面积s[x2, y1 - 1] - 紫色面积s[x1 - 1, y2] + 重复减去的红色面积 s[x1 - 1, y1 - 1]
因此二维前缀和的结论为:
以(x1, y1)为左上角,(x2, y2)为右下角的子矩阵的和为:
s[x2, y2] - s[x1 - 1, y2] - s[x2, y1 - 1] + s[x1 - 1, y1 - 1]
总结:

二维前缀和 代码实现
#include <iostream>
using namespace std;
const int N = 1010;
int n, m, q;
int a[N][N], s[N][N];
int main()
{
scanf("%d%d%d", &n, &m, &q);
for(int i = 1; i <= n; i ++)
for(int j = 1; j <= m; j ++)
scanf("%d", &a[i][j]);
for(int i = 1; i <= n; i ++)
for(int j = 1; j <= m; j ++)
s[i][j] = s[i - 1][j] + s[i][j - 1] - s[i - 1][j - 1] + a[i][j];
while(q --)
{
int x1, y1, x2, y2;
scanf("%d%d%d%d", &x1, &y1, &x2, &y2);
printf("%d\n", s[x2][y2] - s[x1 - 1][y2] - s[x2][y1 - 1] + s[x1 - 1][y1 - 1]);
}
return 0;
}
4、差分

5、一维差分
类似于数学中的求导和积分,差分可以看成前缀和的逆运算。
差分数组:
首先给定一个原数组a:a[1], a[2], a[3],,,,,, a[n];
然后我们构造一个数组b : b[1], b[2], b[3],,,,,, b[i];
使得 a[i] = b[1] + b[2] + b[3] + ,,,,,, + b[i]
也就是说,a数组是b数组的前缀和数组,反过来我们把b数组叫做a数组的差分数组。换句话说,每一个a[i]都是b数组中从头开始的一段区间和。
考虑如何构造差分b数组?
最为直接的方法
如下:
a[0 ]= 0;
b[1] = a[1] - a[0];
b[2] = a[2] - a[1];
b[3] = a [3] - a[2];
…
b[n] = a[n] - a[n - 1];
图示:

我们只要有b数组,通过前缀和运算,就可以在O(n) 的时间内得到 a 数组 。
知道了差分数组有什么用呢? 别着急,慢慢往下看。
话说有这么一个问题:
给定区间[l, r ],让我们把a数组中的[l, r] 区间中的每一个数都加上c,即 a[l] + c , a[l + 1] + c , a[l + 2] + c ,,,,,, a[r] + c;
暴力做法是for循环l到r区间,时间复杂度O(n),如果我们需要对原数组执行m次这样的操作,时间复杂度就会变成O(n * m)。有没有更高效的做法吗? 考虑差分做法,(差分数组派上用场了)。
始终要记得,a数组是b数组的前缀和数组,比如对b数组的b[i]的修改,会影响到a数组中从a[i]及往后的每一个数。
首先让差分b数组中的 b[l] + c ,通过前缀和运算,a数组变成 a[l] + c ,a[l + 1] + c,,,,,, a[n] + c;
然后我们打个补丁,b[r + 1] - c, 通过前缀和运算,a数组变成 a[r + 1] - c,a[r + 2] - c,,,,,,,a[n] - c;
为啥还要打个补丁?
我们画个图理解一下这个公式的由来:

b[l] + c,效果使得a数组中 a[l] 及以后的数都加上了c(红色部分),但我们只要求l到r 区间加上 c, 因此还需要执行 b[r + 1] - c,让a数组中 a[r + 1]及往后的区间再减去c(绿色部分),这样对于a[r] 以后区间的数相当于没有发生改变。
因此我们得出一维差分结论:给a数组中的[ l, r] 区间中的每一个数都加上c,只需对差分数组b做 b[l] + = c, b[r+1] - = c 。时间复杂度为O(1), 大大提高了效率。
总结:

一维差分 代码实现
#include <iostream>
using namespace std;
const int N = 100010;
int n, m;
int a[N], b[N];
void insert(int l, int r, int c)
{
b[l] += c;
b[r + 1] -= c;
}
int main()
{
scanf("%d%d", &n, &m);
for(int i = 1; i <= n; i ++) scanf("%d", &a[i]);
// 先在a的差分数组中,把a的每个元素插入进去
for(int i = 1; i <= n; i ++) insert(i, i, a[i]);
while(m --)
{
int l, r, c;
scanf("%d%d%d", &l, &r, &c);
insert(l, r, c);
}
// 求一遍b数组的前缀和
for(int i = 1; i <= n; i ++) b[i] += b[i - 1];
// 把b打印出来
for(int i = 1; i <= n; i ++) printf("%d ", b[i]);
return 0;
}
6、二维差分
如果扩展到二维,我们需要让二维数组被选中的子矩阵中的每个元素的值加上c,是否也可以达到O(1)的时间复杂度。答案是可以的,考虑二维差分。
a[][]数组是b[][]数组的前缀和数组,那么b[][]是a[][]的差分数组
原数组: a[i][j]
我们去构造差分数组: b[i][j]
使得a数组中a[i][j]是b数组左上角(1,1)到右下角(i,j)所包围矩形元素的和。
如何构造b数组呢?
其实关于差分数组,我们并不用考虑其构造方法,因为我们使用差分操作在对原数组进行修改的过程中,实际上就可以构造出差分数组。
同一维差分,我们构造二维差分数组目的是为了 让原二维数组a中所选中子矩阵中的每一个元素加上c的操作,可以由O(n*n)的时间复杂度优化成O(1)
已知原数组a中被选中的子矩阵为 以(x1,y1)为左上角,以(x2,y2)为右下角所围成的矩形区域;
始终要记得,a数组是b数组的前缀和数组,比如对b数组的b[i][j]的修改,会影响到a数组中从a[i][j]及往后的每一个数。
假定我们已经构造好了b数组,类比一维差分,我们执行以下操作
来使被选中的子矩阵中的每个元素的值加上c
b[x1][y1] + = c ;
b[x1,][y2+1] - = c;
b[x2+1][y1] - = c;
b[x2+1][y2+1] + = c;
每次对b数组执行以上操作,等价于:
for(int i = x1;i <= x2;i++)
for(int j = y1;j <= y2;j++)
a[i][j] += c;
我们画个图去理解一下这个过程:

b[x1][y1] + = c ; 对应图1 ,让整个a数组中蓝色矩形面积的元素都加上了c。
b[x1,][y2+1] - = c; 对应图2 ,让整个a数组中绿色矩形面积的元素再减去c,使其内元素不发生改变。
b[x2+1][y1] - = c; 对应图3 ,让整个a数组中紫色矩形面积的元素再减去c,使其内元素不发生改变。
b[x2+1][y2+1] + = c; 对应图4,让整个a数组中红色矩形面积的元素再加上c,红色内的相当于被减了两次,再加上一次c,才能使其恢复。

我们将上述操作封装成一个插入函数:
void insert(int x1,int y1,int x2,int y2,int c)
{ //对b数组执行插入操作,等价于对a数组中的(x1,y1)到(x2,y2)之间的元素都加上了c
b[x1][y1] += c;
b[x2 + 1][y1] -= c;
b[x1][y2 + 1] -= c;
b[x2 + 1][y2 + 1] += c;
}
我们可以先假想a数组为空,那么b数组一开始也为空,但是实际上a数组并不为空,因此我们每次让以(i,j)为左上角到以(i,j)为右下角面积内元素(其实就是一个小方格的面积)去插入 c = a[i][j] ,等价于原数组a中(i,j) 到(i,j)范围内 加上了 a[i][j] ,因此执行 n*m次插入操作,就成功构建了差分b数组.
这叫做曲线救国。
代码如下:
for(int i = 1;i <= n;i++)
{
for(int j = 1;j <= m;j++)
{
insert(i, j, i, j, a[i][j]); //构建差分数组
}
}
当然关于二维差分操作也有直接的构造方法,公式如下:
b[i][j] = a[i][j] − a[i − 1][j] − a[i][j − 1] + a[i −1 ][j − 1]
二维差分数组的构造同一维差分思维相同,因次在这里就不再展开叙述了。
总结:

二维差分矩阵 代码实现
#include <iostream>
using namespace std;
const int N = 1010;
int a[N][N], b[N][N];
int main()
{
int n, m, q;
scanf("%d%d%d", &n, &m, &q);
for (int i = 1; i <= n; i ++ )
{
for (int j = 1; j <= m; j ++ )
{
scanf("%d", &a[i][j]);
b[i][j] = a[i][j] - a[i - 1][j] - a[i][j - 1] + a[i - 1][j - 1];
}
}
while (q -- )
{
int x1, y1, x2, y2, c;
scanf("%d%d%d%d%d", &x1, &y1, &x2, &y2, &c);
b[x1][y1] += c;
b[x1][y2 + 1] -= c;
b[x2 + 1][y1] -= c;
b[x2 + 1][y2 + 1] += c;
}
for (int i = 1; i <= n; i ++ )
{
for (int j = 1; j <= m; j ++ )
{
a[i][j] = a[i - 1][j] + a[i][j - 1] - a[i - 1][j - 1] + b[i][j];
printf("%d ", a[i][j]);
}
printf("\n");
}
return 0;
}

被折叠的 条评论
为什么被折叠?



