自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(270)
  • 收藏
  • 关注

原创 数字孪生—A digital twin framework for urban parking management and mobility forecasting

快速的城市化与人口增长给城市出行管理带来了重大挑战,例如交通拥堵、公共交通效率低下和环境污染。本文提出了一种用于城市停车管理与出行预测的数字化框架的开发与实现。该框架融合了广泛的历史与实时数据,包括停车计时器交易记录、收入记录、街道占用率、停车违规行为,以及基于传感器的停车位使用情况。此外,数据还涵盖天气条件、时间模式(如工作日与高峰时段)以及执勤人员的轮班时间表。

2026-01-31 18:20:24 125

原创 视觉语言导航—Affordances-oriented planning using foundation models for continuous VLN

本文提出AO-Planner框架,通过视觉可供性提示(VAP)和PathAgent规划器,首次实现大语言模型(LLM)在连续视觉语言导航(VLN)任务中的高低层级统一规划。该方法利用SAM模型分割可通行区域生成候选路径点,由LLM进行选择并标注路径,再通过3D重建模块转换为空间坐标。在R2R-CE和RxR-CE数据集上的实验表明,AO-Planner在零样本设定下达到SOTA性能,SPL提升达8.8%。此外,该方法还可生成高质量伪标签用于训练轻量级预测器,成功率达47%。

2025-12-21 09:51:12 1098

原创 视觉语言导航—Navgpt-2: Unleashing navigational reasoning capability for large vision-language models

本文提出NavGPT-2系统,通过融合大型视觉语言模型(VLM)与导航策略网络,有效提升了基于语言模型的导航性能。系统采用InstructBLIP架构,结合多图像感知能力和GPT-4V生成的导航推理数据,实现视觉指令微调。实验表明,该方法在保持语言交互能力的同时,显著缩小了与专业VLN模型的性能差距,为构建可解释的导航智能体提供了新思路。

2025-12-21 09:46:53 756

原创 增强现实—Navgpt: Explicit reasoning in vision-and-language navigation with large language models

本文提出NavGPT,一个完全基于大语言模型(LLM)的视觉-语言导航系统。NavGPT通过文本描述感知环境,将视觉信息转化为语言输入,实现零样本导航决策。研究表明,NavGPT展现出多项高阶能力:指令分解、常识整合、地标识别、状态追踪和异常调整。此外,它还能生成导航指令和绘制轨迹图。尽管零样本性能尚未超越专门训练的导航模型,但NavGPT首次系统性地展示了LLM在复杂导航任务中的显式推理过程,为未来研究提供了两个方向:直接引入多模态输入或融合LLM推理能力到现有导航模型中。

2025-09-07 06:45:00 779

原创 增强现实—Navid: Video-based vlm plans the next step for vision-and-language navigation

本文提出了一种基于视频的视觉语言大模型(VLM)——NaVid,用于解决视觉与语言导航(VLN)中的泛化挑战。NaVid仅依赖单目RGB视频流和自然语言指令,无需地图、里程计或深度信息,在仿真和真实环境中均达到SOTA性能。其创新点包括:(1)采用视频建模实现时空上下文编码;(2)结合51万导航样本和76.3万网页数据进行训练;(3)在跨数据集评估和Sim2Real迁移中表现优异(真实场景成功率约66%)。实验表明,该方法显著提升了导航智能体的泛化能力,为具身AI的实用化提供了新思路。

2025-09-06 07:45:00 1010

原创 增强现实—March in chat: Interactive prompting for remote embodied referring expression

近年来,视觉与语言导航(Vision-and-Language Navigation, VLN)任务不断涌现,其研究范式从基于房间的导航扩展到基于目标物体的导航,并从室内环境逐渐迈向室外环境。REVERIE(Remote Embodied Referring Expression)任务颇具特色,因为它只为智能体提供高级别的指令,这更贴近实际生活中人类对机器的命令方式。

2025-09-06 06:45:00 2143

原创 增强现实—Reverie: Remote embodied visual referring expression in real indoor environments

本文介绍了REVERIE任务,这是一个面向真实室内环境的远程视觉指代表达导航任务,旨在让机器人通过自然语言指令在陌生环境中导航并精确定位目标物体。REVERIE数据集基于Matterport3D Simulator构建,包含86座建筑、10,318个全景图像、4,140个目标物体和21,702条多样化指令。与现有任务相比,REVERIE融合了导航和物体识别双重挑战,要求智能体在目标初始不可见的情况下完成探索和定位。

2025-09-05 07:45:00 1229

原创 增强现实—Room-across-room: Multilingual vision-and-language navigation with dense spatiotemporal groundi

《跨越房间:多语言视觉语言导航与密集时空对齐》论文摘要 本文提出Room-Across-Room (RxR)数据集,推进视觉语言导航(VLN)研究。RxR通过三大创新解决现有数据集局限:(1) 多语言支持(英语、印地语、泰卢固语原生指令);(2) 规模扩展(126K指令,16.5K路径,比R2R大10倍);(3) 精细对齐(词语级时空标注+人类执行轨迹)。采用两阶段路径采样策略确保路径多样性,消除捷径偏差。实验建立单语/多语基线模型,验证多任务学习效果。

2025-09-05 06:45:00 1982

原创 增强现实—Vision-and-language navigation: Interpreting visually-grounded navigation instructions in real

技术探索空间:视觉语言导航新突破 本文提出 Matterport3D Simulator,一个基于真实全景RGB-D图像的大规模强化学习环境,并构建了首个真实场景视觉语言导航基准数据集 Room-to-Room(R2R)。该研究突破传统合成环境的局限,通过21,567条自然语言指令与90个真实建筑场景的结合,推动机器人在开放域中理解并执行复杂导航任务。实验验证了序列到序列模型在该任务中的潜力,为视觉与语言跨模态研究提供了新方向。

2025-09-04 23:06:34 1326

原创 增强现实—Vln-video: Utilizing driving videos for outdoor vision-and-language navigation

本文提出VLN-VIDEO框架,利用行车视频增强户外视觉-语言导航(VLN)任务。通过自动生成导航指令和动作标注,将美国多城市的行车视频转化为高质量训练数据。方法结合模板填充指令生成和图像旋转相似度预测动作,构建三项代理任务进行预训练:掩码语言建模、指令-轨迹匹配和下一步动作预测。实验显示,在Touchdown数据集上任务完成率提升2.1%,刷新SOTA。相比仅使用领域内数据预训练,验证集任务完成率提升2.9%。该工作为户外VLN提供了高效的数据增强方案。

2025-09-04 06:45:00 841

原创 增强现实—A priority map for vision-and-language navigation with trajectory plans and feature-location cu

本文提出了一种新型优先图模块(PM-VLN)用于提升视觉-语言导航(VLN)系统的性能。该模块受人类神经心理学中"优先图"机制启发,通过少样本预训练实现对关键特征的感知。研究提出分层轨迹规划流程,结合视觉增强滤波和文本跨度预测,解决跨模态对齐难题。方法在Touchdown数据集上实现SOTA性能,任务完成率达单独Transformer模型的2倍。创新点包括:1)新型优先图模块;2)轨迹规划方法;3)两个领域内数据集;4)特征-位置框架。

2025-09-03 07:45:00 1144

原创 大模型—ODE: Open-Set Evaluation of Hallucinations in Multimodal Large Language Models

本文提出开放集动态评估协议ODE,用于评估多模态大语言模型(MLLMs)中的对象幻觉现象。针对现有静态基准存在数据污染风险的问题,ODE通过构建图结构表示对象概念及其属性关系,动态生成多样化的测试样本。该协议支持四种分布准则(标准、长尾、随机、虚构)生成样本,既能评估存在性和属性级幻觉,又能降低数据重复风险。实验表明,在ODE生成的样本上,MLLMs表现出更高的幻觉率,验证了其评估有效性。此外,利用ODE生成数据对模型进行微调可有效缓解幻觉问题。

2025-09-03 06:45:00 1703

原创 增强现实—Navgpt-2: Unleashing navigational reasoning capability for large vision-language models

本文提出NavGPT-2系统,通过融合大型视觉语言模型(VLM)与导航策略网络,解决了当前LLM在视觉-语言导航(VLN)任务中性能不足的问题。系统采用InstructBLIP架构,支持多图像感知和逐步导航推理,利用GPT-4V生成训练数据完成视觉指令微调。实验表明,该方法在保持LLM语言交互优势的同时,显著缩小了与专业VLN模型的性能差距,实现了可解释的导航决策。创新性地结合了VLM的视觉理解能力和导航策略网络的路径规划优势,为构建交互式导航智能体提供了新思路。代码已在GitHub开源。

2025-09-03 01:19:39 1944

原创 增强现实—Velma: Verbalization embodiment of llm agents for vision and language navigation in street view

本文提出了一种基于语言化具身(verbalization embodiment)的视觉与语言导航方法VELMA,通过将轨迹和视觉观察转化为语言提示,使大型语言模型(LLM)能够有效执行城市级街景导航任务。该方法在Touchdown环境中实现了few-shot学习,并通过微调将导航成功率相对提升25%。研究还修正了环境中的朝向对齐问题,使智能体动作更符合人类指令逻辑。实验表明,VELMA在复杂真实场景中展现出强大的推理能力,为LLM在具身智能领域的应用提供了新思路。

2025-09-02 00:07:06 1477

原创 增强现实—Gated-attention architectures for task-oriented language grounding

本文提出了一种端到端可训练的神经架构,用于在三维环境中基于自然语言指令完成任务导向的视觉导航。该模型通过门控注意力机制(Gated-Attention)融合视觉与语言模态特征,支持强化学习与模仿学习方法。实验表明,该方法在未见过的指令和环境上具有良好的泛化能力。作者还构建了一个基于3D游戏引擎的新环境,用于模拟复杂导航任务中的多模态交互挑战。创新点包括:1)不依赖先验知识的端到端学习框架;2)新颖的门控注意力多模态融合机制;3)支持第一人称视角的3D仿真环境。

2025-09-02 00:03:56 1056

原创 增强现实—Multimodal text style transfer for outdoor vision-and-language navigation

本文提出多模态文本风格迁移(MTST)方法,解决户外视觉语言导航(VLN)中的数据稀缺问题。通过将Google Maps API生成的模板化导航指令迁移为包含视觉目标描述的类人风格指令,显著增强训练数据质量。同时设计VLN Transformer模型,采用两阶段训练:先在风格迁移后的外部数据上预训练,再在真实导航数据上微调。实验表明,该方法在户外VLN任务完成率上相对提升8.7%,有效缓解了数据不足难题。研究还构建并开源了Manh-50辅助数据集,包含风格迁移后的导航指令,为后续研究提供资源支持。

2025-06-16 21:00:34 1155

原创 自动驾驶系统研发—从工程视角看纯视觉自动驾驶的安全挑战与应对策略

本文深入探讨了纯视觉自动驾驶系统的安全挑战与应对策略。文章首先分析了厂商选择纯视觉方案的三大现实考量:成本优势、系统简化与数据闭环友好性。随后揭示了纯视觉感知的三大系统性瓶颈:极端环境适应性差、深度估计精度不足和感知-决策延迟问题。针对这些挑战,团队提出了三种工程解决方案:Occupancy Network空间建图、高精地图先验引导和视觉众包数据增强。最后强调自动驾驶安全的核心在于系统冗余设计,并展望了多任务模型、端到端学习等未来突破方向。文章指出纯视觉并非激进实验,而是工程权衡下的最优解。

2025-06-16 20:57:34 814

原创 增强现实—Learning to stop: A simple yet effective approach to urban vision-language navigation

本文提出了一种针对城市级视觉语言导航(VLN)任务的新方法L2STOP,通过差异化建模"停止"动作与方向动作,显著提升了导航精度。该方法包含Stop Indicator和Direction Decider两个模块,并采用加权损失函数强化停止动作学习。在TOUCHDOWN数据集上的实验表明,L2STOP在Success weighted by Edit Distance指标上实现了6.89%的绝对提升,达到了新的SOTA性能。

2025-06-15 10:58:37 894

原创 自动驾驶系统研发系列—激光雷达干扰实战:自动驾驶安全的隐形陷阱

自动驾驶感知系统的隐形挑战 随着自动驾驶技术的发展,激光雷达在多车协同环境中暴露出的干扰问题日益凸显。文章深入分析了激光雷达在真实道路场景中出现的"点云鬼影"和误检现象,揭示其根源在于频域、时域和空间维度的信号重叠。这种干扰会导致感知系统出现虚警、漏检甚至决策错误,严重影响安全性。为解决这一问题,业界正从硬件设计(如FMCW技术)、时序同步(GNSS时间校准)和智能算法(编码机制)三方面探索解决方案。作者指出,未来需要结合V2X车路协同和AI动态调度,构建更鲁棒的感知系统。

2025-06-15 10:33:10 373

原创 增强现实—Analyzing generalization of vision and language navigation to unseen outdoor areas

本文聚焦于户外视觉-语言导航(VLN)任务在未见区域中的泛化问题。研究发现,传统模型在新区域性能显著下降,而依赖图结构特征(如路口类型嵌入和航向变化)能有效提升泛化能力,图像信息贡献有限。实验基于Touchdown和map2seq数据集,提出一种融合多模态特征的序列模型(ORAR),在跨区域测试中表现优异。研究揭示了当前VLN系统对城市环境结构的依赖偏差,呼吁构建更大规模、地理多样性的数据集以推动领域发展。核心贡献包括:提出泛化增强方法、首次系统分析户外VLN的跨区域性能、验证结构特征的关键作用,并

2025-06-13 22:33:31 767

原创 增强现实—Generating landmark navigation instructions from maps as a graph-to-text problem

以汽车为中心的导航服务通常依赖于带有街道名称的转弯提示与距离信息,而人类自然使用的导航指令则以可见的物理对象(即地标)为核心。本研究提出了一种神经网络模型,能够接受OpenStreetMap表示作为输入,并学习生成包含显著可见地标的导航指令,这些指令贴近人类自然语言表达习惯。

2025-06-13 22:30:19 983

原创 自动驾驶系统研发系列—AI大模型驱动的智能座舱:从概念到落地的工程解析

过去两年,汽车圈的智能化风向标从“辅助驾驶”逐步转向“智能座舱”。与硬件参数的堆叠相比,座舱的智能化更直接触达用户感知:一句话能不能被理解?语音助手是否有温度?推荐内容是否合时宜?这些问题背后,正在悄然发生一场由大语言模型(LLM)驱动的人机交互革命。

2025-06-12 14:21:35 837

原创 增强现实—Touchdown: Natural language navigation and spatial reasoning in visual street environments

本文介绍了一个结合语言与视觉推理的新型任务TOUCHDOWN,其包含导航和空间描述解析两个子任务。该任务基于真实城市街景环境构建,要求智能体遵循自然语言指令导航至目标位置后,通过空间描述定位隐藏物体。数据集包含9,326条样本,具有语言复杂、空间推理要求高的特点。实验表明该任务对现有方法构成显著挑战。研究还分析了TOUCHDOWN与其他视觉语言任务的差异,着重其更丰富的空间表达与真实环境带来的新推理需求。该工作为现实场景下的多模态推理提供了新基准。

2025-06-12 14:18:57 1351

原创 增强现实—Where am I? Cross-View Geo-localization with Natural Language Descriptions

本文提出了一种基于自然语言描述的跨视角地理定位新任务,构建了CVG-Text数据集(涵盖3万+场景的街景图、卫星图、OSM及文本描述),并提出CrossText2Loc方法,在检索准确率上提升10%并具备可解释性。主要贡献包括:1)首次形式化文本驱动的跨视角定位任务;2)利用多模态大模型构建高质量数据集;3)创新方法处理长文本并生成检索解释。实验表明该方法在召回率和可解释性方面显著优于现有技术,为行人导航、紧急响应等应用提供了新解决方案。

2025-06-11 21:18:25 1490 1

原创 增强现实—Flame: Learning to navigate with multimodal llm in urban environments

本文提出FLAME(FLAMingo-Architected Embodied Agent),一种面向城市视觉与语言导航(VLN)任务的新型多模态大型语言模型(MLLM)智能体。针对通用LLM在导航任务中的局限性,FLAME通过三阶段调优策略(单视角调优、多视角调优和端到端训练)有效适配导航需求,并利用GPT-4合成的增强数据进行训练。实验表明,FLAME在Touchdown和Map2seq数据集上分别取得7.3%和3.74%的任务完成率提升,显著超越现有方法。该研究不仅为城市VLN任务提供高效解决方案,更

2025-06-11 21:15:43 1257

原创 增强现实—Vision-and-language navigation today and tomorrow: A survey in the era of foundation models

随着基础模型(foundation models)在计算机视觉与自然语言处理领域的突破性发展,视觉-语言导航(Vision-and-Language Navigation, VLN)研究也迎来了新的转折点。近年来,VLN 任务吸引了广泛关注,并涌现出众多方法试图提升智能体在真实环境中的理解、感知与决策能力。

2025-06-10 15:45:12 864

原创 自动驾驶系统研发系列—当HIL仿真成为自动驾驶的短板:工程师的实战总结与系统反思

自动驾驶发展多年,从L2到L4,技术路径、产业节奏早已多元化。然而,几乎所有人都会承认一个现实:测试验证能力,特别是仿真能力,决定了量产进度。而在仿真体系中,HIL(Hardware-in-the-loop)曾被寄予厚望,却在实际工程中反复踩坑。作为一名一线工程师,经历过多个智能驾驶HIL系统的设计、部署、调试,也踩过诸如“视频注入卡”、“多机时钟不同步”等典型坑。今天这篇文章,分享真实的HIL仿真困境,以及未来可能的出路。

2025-06-10 08:15:00 757

原创 增强现实—Vision-and-language navigation: A survey of tasks, methods, and future directions

本文综述了视觉-语言导航(VLN)领域的研究进展,系统梳理了任务分类、数据集特点与评估方法。从通信复杂度(初始指令、请求引导、对话)和任务目标(细粒度导航、粗粒度导航、导航+交互)两个维度对VLN任务进行归类,介绍了R2R、ALFRED等代表性数据集。评估指标分为目标导向类(如成功率、路径长度)和路径保真度类,全面衡量智能体表现。文章还总结了当前技术路线与未来方向,为构建能理解自然语言、感知环境并完成复杂任务的智能体提供重要参考。

2025-06-09 14:01:03 1225

原创 增强现实—Loc4plan: Locating before planning for outdoor vision and language navigation

在多模态智能体导航(Vision and Language Navigation, VLN)任务中,智能体需要理解自然语言指令并根据视觉环境做出导航决策。这类任务尤其在开放空间或户外环境中极具挑战性,其中一个核心难点在于:智能体在多步执行过程中,如何明确“我现在完成了哪部分指令”,从而避免偏离目标。

2025-06-09 13:58:52 1091

原创 人工智能—ODE: Open-Set Evaluation of Hallucinations in Multimodal Large Language Models

幻觉(Hallucination)始终是多模态大语言模型(Multimodal Large Language Models, MLLMs)面临的一个挑战。然而,现有用于评估幻觉的基准多数是静态的,这可能忽略了数据污染的潜在风险。

2025-06-08 10:55:48 834

原创 食品计算—Convolution-enhanced bi-branch adaptive transformer with cross-task interaction

考虑到食物图像属于非结构化图像,具有复杂且不固定的视觉模式,挖掘与食物相关的语义感知区域显得尤为关键。此外,食物图像中所包含的食材彼此之间由于烹饪习惯具有语义上的关联,并且在分层的食物分类本体结构下,食物类别与食材之间也存在显著的语义关系。因此,建模食材之间的远程语义关系,以及类别与食材之间的语义交互,对于食材识别和食物分析具有重要意义。基于上述因素,提出了一个用于食物类别和食材识别的多任务学习框架。

2025-06-08 10:52:09 833

原创 食品计算—Food Portion Estimation via 3D Object Scaling

基于图像的方法缓解了传统方法中用户负担重和主观偏差大的问题。然而,由于智能手机或可穿戴设备拍摄的食物图像是二维表示,导致三维信息的丢失,因此精确的食物分量估计仍然是一项主要挑战。本文提出了一个新框架,能够从二维图像中估计食物的体积和能量,该方法结合了三维食物模型和用餐场景中的物理参照物。

2025-06-07 14:33:07 1478

原创 自动驾驶系统研发系列—从LSS到BEVFormer:视觉BEV感知算法的演进与实战部署思考

在自动驾驶逐渐向L3+推进的过程中,视觉系统面临的最大挑战不再是识别能力,而是如何在复杂感知环境中构建稳定、结构化的场景表示。多摄像头的异视角信息融合往往受限于透视畸变、光照变化和遮挡问题。为此,Bird’s Eye View(BEV)感知应运而生,它提供了一种将所有视觉信息统一映射到俯视图网格的方式。通过这种“上帝视角”,我们可以在几何对齐的空间中分析车道线、障碍物甚至动态目标,从而更自然地与决策模块对接。换句话说,BEV不只是感知方式的转变,它实际上是整个自动驾驶感知系统架构的一次重构。

2025-06-07 08:45:00 739

原创 食品计算—Dpf-nutrition: Food nutrition estimation via depth prediction and fusion

本文提出DPF-Nutrition,一种基于单目图像的食物营养估计新方法。通过深度预测模块生成深度图以恢复三维信息,结合RGB-D融合模块(含跨模态注意力块和多尺度网络)提升估计精度。在Nutrition5k数据集上的实验表明,该方法对热量、质量等营养素的平均估计误差降至17.8%,较现有单目方法提升11.3%,且无需额外深度传感器。研究首次将深度预测与RGB-D融合技术结合,为自动化饮食监测提供了高效低成本解决方案,助力健康管理。

2025-06-04 16:00:14 878

原创 食品计算—Rapid non-destructive analysis of food nutrient content using swin-nutrition

本文提出了一种名为Swin-Nutrition的食品营养无损检测方法,通过结合Swin Transformer和特征融合技术实现对食品热量、质量、脂肪等营养成分的快速评估。该方法采用Swin Transformer作为主干网络提取多尺度特征,并设计特征融合模块提升预测精度。在Nutrition5K数据集上的实验表明,该方法在五项营养指标上的平均绝对误差仅为15.3%-22.1%,显著优于传统方法。该研究为计算机视觉在食品营养检测领域的应用提供了高效解决方案,有助于推动公众饮食健康管理的发展。

2025-06-04 15:56:30 1420

原创 自动驾驶系列—WiseAD: Knowledge Augmented End-to-End Autonomous Driving with Vision-Language Model

WiseAD是一种专为自动驾驶设计的知识增强型视觉-语言模型,旨在提升端到端自动驾驶系统的场景理解与轨迹规划能力。传统方法依赖规则或模仿学习,缺乏人类驾驶员的显性知识推理能力。WiseAD基于轻量级MobileVLM架构,通过整合多源驾驶知识数据集(如LingoQA、DRAMA),扩展模型在场景描述、风险分析、行为解释等维度的“知识深度”与“广度”。创新性地联合训练驾驶知识与轨迹规划任务,将轨迹文本化以实现语言模型对齐。

2025-06-02 15:39:27 1040

原创 国内三维视觉公司深度盘点

最近几年,国内三维视觉公司如雨后春笋般涌现。有人将其视为 AI 落地的最后一个“闭环”,也有人认为这是通向智能制造的底层基石。不管哪种说法,我们确实看到越来越多的公司在悄悄构建自己的三维视觉矩阵,不仅做传感器,也做 SDK,不只是采集数据,更提供感知、理解、控制的一体化解决方案。

2025-06-02 08:45:00 1620

原创 自动驾驶系统研发系列—激光雷达感知延迟:自动驾驶安全的隐形隐患?

激光雷达虽以毫米级精度成为自动驾驶的"黄金标准",但其感知延迟(约300毫秒)成为重大安全隐患。在120公里时速下,延迟导致10米;盲驾距离,严重影响突发情况响应能力。多传感器融合虽提升感知完整性,却进一步增加同步与处理延迟。这种架构性延迟在复杂交通场景中可能造成决策窗口丢失,甚至引发事故。

2025-06-01 17:36:09 513

原创 自动驾驶系列—A Survey on Deep Learning-Based Lane Detection Algorithms for Camera and LiDAR

系统梳理了近年来基于深度学习的算法进展。文章从功能模块(预处理、特征提取、检测头等)详细解析2D/3D视觉检测方法,并首次涵盖激光雷达点云及多传感器融合等新兴方向。通过对比主流数据集(如TuSimple、CULane、ApolloScape)和评估指标,分析了不同算法的优劣。针对光照变化、复杂场景等挑战,文章指出未来研究方向包括跨域泛化、多模态融合及轻量化部署。

2025-06-01 09:55:40 1165

原创 自动驾驶系统研发系列—端到端自动驾驶:愿景、陷阱与现实博弈

端到端自动驾驶的技术挑战与工程实践思考 本文从一线从业者视角,深入剖析了端到端自动驾驶技术的真实挑战。文章指出,端到端并非万能方案,而是对系统能力的全面考验。关键难点包括:感知与规划的耦合问题、数据闭环构建、算力资源需求、多模态标注体系等深层工程挑战。特别强调了covariate shift、多模态输出监督、累积误差等"隐形困难"的存在,并提出了更合理的评估指标体系建议。

2025-05-31 21:01:19 406

后端开发 + SQL与NoSQL数据库 + 电子商务平台数据管理 + 用户数据和交易记录的存储与查询

内容概要: 本项目是一个电子商务平台的后端数据管理模拟系统,结合了SQL数据库(使用SQLite)和NoSQL数据库(使用MongoDB)来处理和存储不同类型的数据。SQL数据库用于存储结构化数据,如用户信息和订单记录;而NoSQL数据库则用于存储灵活的文档模型,如用户的购物车和浏览历史。 使用人群: 后端开发者:需要构建和优化电子商务平台后端数据存储逻辑的专业人员。 全栈开发者:在开发过程中需要理解前后端数据交互和存储机制的开发者。 IT架构师:设计系统数据架构,选择合适的数据存储解决方案。 使用场景及目标: 在电子商务平台开发过程中,处理和存储大量的用户数据和交易记录。 利用SQL数据库的事务性和结构化查询优势,以及NoSQL数据库的灵活性和扩展性。 目标是实现一个高效、可靠且可扩展的数据存储解决方案,以支持电子商务平台的业务需求。 其他说明: 项目提供了一个基础的代码框架,可以根据实际业务需求进行扩展和定制。 包括数据库连接、数据模型定义、数据存储和查询等基本操作。 适合作为学习和教学案例,帮助理解电子商务平台后端开发的数据存储策略。

2024-08-17

数据分析 + 性能分析 + 数据处理 + 识别性能瓶颈和优化数据处理流程

内容概要: 本项目是一个集成了性能分析的数据分析工具,使用Python的cProfile模块来识别数据处理过程中的性能瓶颈。项目包括数据加载、清洗、处理和分析的完整流程,并通过性能分析报告提供优化建议。 使用人群: 数据分析师:需要对大量数据进行处理和分析的专业人士。 开发者:希望优化数据处理代码的性能的编程人员。 学生和教育工作者:学习和教授数据处理及性能分析的概念和技术。 使用场景及目标: 在处理大规模数据集时,快速定位并解决性能问题。 教育和研究中,作为教学案例展示数据处理和性能分析的实际操作。 作为开发过程中的性能监控工具,确保代码的效率和可靠性。 其他说明: 项目提供了一个示例CSV数据文件,用户可以根据自己的需求替换或扩展数据集。 项目代码包括了异常处理和数据清洗,确保分析的准确性。 性能分析报告将帮助用户理解各个数据处理步骤的耗时,为代码优化提供依据。 项目遵循开源许可证,鼓励社区贡献和代码共享。

2024-08-17

Python编程 + 上下文管理器 + 资源监控 + 系统资源管理与性能监控

本项目是一个基于Python的系统资源监控工具,利用上下文管理器对CPU、内存、磁盘和网络等关键系统资源进行实时监控。通过自定义的上下文管理器类,实现了资源使用情况的收集、监控和可视化展示。 使用人群: 系统管理员:用于监控服务器性能,确保系统稳定运行。 开发者:在开发和测试阶段监控应用对资源的使用情况。 学生和研究人员:学习Python编程和上下文管理器的使用,以及资源监控的概念。 使用场景及目标: 在服务器或本地计算机上运行,以监控和优化资源使用。 集成到开发流程中,帮助开发者理解应用对系统资源的影响。 教育目的,教授学生如何使用Python进行系统编程和资源管理。 其他说明: 本项目遵循MVC(模型-视图-控制器)设计模式,将数据收集、业务逻辑和用户界面分离,以提高代码的可维护性和可扩展性。 项目提供了一个配置文件,允许用户根据需要调整监控参数和阈值。 可视化模块使用Matplotlib库生成图表,直观展示资源使用趋势,帮助用户快速识别潜在的性能问题。 项目代码具有良好的文档和注释,方便用户理解和修改。

2024-08-16

AR开发基础 + ARKit + 平面检测与视觉效果 + 开发初学者教育与引导

内容概要:深入探讨ARKit的平面检测技术,包括原理、实现方式和性能优化。 使用人群:对ARKit有深入了解需求的开发者,特别是那些寻求优化AR应用性能的专业人士。 使用场景及目标:用于提升开发者对ARKit平面检测技术的认识,帮助他们更有效地在应用中实现和优化这一功能。 其他说明:文章详细介绍了ARKit平面检测的内部工作原理和性能考量,适合需要深入理解ARKit的开发者。

2024-08-10

计算机视觉-Flask框架-SQLite数据库-图像展示与筛选-开发示例

内容概要: 本资源包含了一个完整的示例项目,通过使用Flask框架和SQLite数据库,展示如何构建一个简单的图像展示与标签筛选的前后端应用。具体功能包括:在网页上显示图像,提供图像浏览功能,以及根据标签(位置偏差类别和场景)筛选图像的功能。 使用场景及目标: - 机器学习项目:方便展示和筛选训练数据集。 - 数据标注项目:管理和浏览已标注的图像及其标签。 - 教学示例:作为Web开发和数据库管理课程的教学案例。 使用方法: - 下载并解压资源文件。 - 按照提供的环境部署和运行步骤,设置Python环境并安装必要的库。 - 运行数据库设置脚本,初始化并填充示例数据。 - 启动Flask应用,并在浏览器中访问应用页面。 其他说明: 资源文件中包含完整的项目代码,包括数据库设置脚本、Flask应用脚本以及HTML模板文件。示例数据为静态图像和标签,可根据实际需求进行替换和扩展

2024-07-30

七夕特献:用代码编织爱情的浪漫,程序员的专属爱情证书生成器

"探索技术的温柔面,本资源为您提供了一份特别的七夕节礼物——一个基于HTML、CSS和JavaScript构建的爱情证书生成器。这款生成器不仅易于使用,还拥有一个温馨而精致的用户界面,让您能够快速定制并生成专属于您和爱人的爱情证书。无论是作为线上分享的喜悦,还是打印出来的实物纪念,这份由代码编织的情书都将是您表达爱意的独特方式。立即下载,为您的七夕节增添一份程序员独有的浪漫吧!"

2024-07-26

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除