基础算法--位运算

前言

计算机的冯·诺依曼架构的 3 个基本原则。其中第 1 个原则是计算机中所有信息都是采用二进制格式的编码。也就是说,在计算机中程序的数据和指令,以及用户输入的所有数据,计算机都需要把它们转换为二进制的格式,才能进行识别和运算。

然而,我们日常生活接触到的大部分数字却是十进制编码,例如手机号码、工牌号、学号。那为什么计算机要使用二进制数制?二进制数据如何进行运算,以及计算机做了哪些优化来如何提高运算的效率?今天我们就围绕这些问题展开。

在这里插入图片描述

1. 为什么计算机要使用二进制数制?

所谓数制其实就是一种 “计数的进位方式”。
常见的数制有十进制、二进制、八进制和十六进制:

  • 十进制是我们日常生活中最熟悉的进位方式,它一共有 0、1、2、3、4、5、6、7、8 和 9 十个符号。在计数的过程中,当某一位满 10 时,就需要向它临近的高位进一,即逢十进一;

  • 二进制是程序员更熟悉的进位方式,也是随着计算机的诞生而发展起来的,它只有 0 和 1 两个符号。在计数的过程中,当某一位满 2 时,就需要向它临近的高位进一,即逢二进一;

  • 八进制和十六进制同理。

那么,为什么计算机要使用二进制数制,而不是人类更熟悉的十进制呢?其原因在于二进制只有两种状态,制造只有 2 个稳定状态的电子元器件可以使用高低电位或有无脉冲区分,而相比于具备多个状态的电子元器件会更加稳定可靠。

2.有符号数与无符号数

在计算机中会区分有符号数和无符号数,无符号数不需要考虑符号,可以将数字编码中的每一位都用来存放数值。有符号数需要考虑正负性,然而计算机是无法识别符号的 “正+” 或 “负-” 标志的,那怎么办呢?

好在我们发现 “正 / 负” 是两种截然不同的状态,正好可以映射到计算机能够理解的 “0 / 1” 上。因此,我们可以直接 “将符号数字化”,将 “正+” 数字化为 “0”,将 “负-” 数字化为 “1”,并将数字化后的符号和数值共同组成数字编码。

另外,为了计算方便,我们额外再规定将 “符号位” 放在数字编码的 “最高位”。例如,+1110 和 -1110 用 8 位二进制表示就是:

  • 0000, 1110(符号作为编码的一部分,最高位 0 表示正数)
  • 1000, 1110(符号作为编码的一部分,最高位 1 表示负数)

从中我们也可以看出无符号数和有符号数的区别:

  • 1、最高位功能不同: 无符号数的编码中的每一位都可以用来存放数值信息,而有符号数需要在编码的最高位留出一位符号位;

  • 2、数值范围不同: 相同位数下有符号数和无符号数表示的数值范围不同。以 16 位数为例,无符号数可以表示 0~65536,而有符号数可以表示 -32768~32768。

    提示: 无符号数和有符号数表示的数值范围大小是一样大的,n 位二进制最多只能表示 2 n 2^n 2n 个信息量,这是无法被突破的。

3. 机器数的运算效率问题

在计算机中,我们会把带 “正 / 负” 符号的数称为真值(True Value),而把符号化后的数称为机器数(Computer Number)。
机器数才是数字在计算机中的二进制表示。 例如在前面的数字中, +1110 是真值,而 0000, 1110 是机器数。新的问题来了:将符号数字化后的机器数,在运算的过程中符号位是否与数值参与运算,又应该如何运算呢?
我们先举几个加法运算的例子:

  • 两个正数相加:
0000, 1110 + 0000, 0001 = 0000, 1111 // 14 + 1 = 15 正确
^            ^            ^
符号位        符号位        符号位
  • 两个负数相加:
1000, 1110 + 1000, 0001 = 0000, 1111 // (-14) + (-1) = 15 错误
^            ^            ^
符号位        符号位        符号位(最高位的 1 溢出)
  • 正负数相加:
0000, 1110 + 1000, 0001 = 1001, 1111 // 14 + (-1) = -15 错误
^            ^            ^
符号位        符号位        符号位

可以看到,在对机器数进行 “按位加法” 运算时,只有两个正数的加法运算的结果是正确的,而包含负数的加法运算的结果却是错误的,会出现-14 - 1 = 1514 - 1 = -15 这种错误结果。

所以,带负数的加法运算就不能使用常规的按位加法运算了,需要做特殊处理:

  • 两个正数相加:

    直接做按位加法。

  • 两个负数相加:
    1. 用较大的绝对值 + 较小的绝对值(加法运算);
    2. 最终结果的符号为负。
  • 正负数相加:
    1. 判断两个数的绝对值大小(数值部分);
    2. 用较大的绝对值 - 较小的绝对值(减法运算);
    3. 最终结果的符号取绝对值较大数的符号。

哇🤩?好好的加法运算给整成减法运算? 运算器的电路设计不仅要多设置一个减法器,而且运算步骤还特别复杂。那么,有没有不需要设置减法器,而且步骤简单的方案呢?

4. 原码、反码、补码

为了解决有符号机器数运算效率问题,计算机科学家们提出多种机器数的表示法:
在这里插入图片描述

  • 1、原码: 原码是最简单的机器数,例如前文提到从 +1110-1110 转换得到的 0000, 11101000, 1110 就是原码表示法,所以原码在进行数字运算时会存在前文提到的效率问题;
  • 2、反码: 反码一般认为是原码和补码转换的中间过渡
  • 3、补码: 补码才是解决机器数的运算效率的关键, 在计算机中所有 “整型类型” 的负数都会使用补码表示法

    正数的补码是原码本身;
    零的补码是零;
    负数的补码是在反码的基础上再加 1。

很多教材和网上的资料会认为正数的原码、反码和补码是相同的,这么说倒也不影响什么。我的观点是正数是没有反码和补码的,负数使用补码是为了找到一个 “等价” 的正补数代替负数参与计算,将加减法运算统一为两个正数加法运算,而正数自然是不需要替换的,所以也就没有补码的形式。

5. 使用补码消除减法运算

理解补码表示法后,似乎还是不清楚补码有什么用❓

我们重新计算上一节的加法运算试试:
在这里插入图片描述

补码转原码

正数的原码、反码和补码相同,负数的原码是其补码加1,因此可以通过补码得到原码:
负数的补码:符号位为1,其余各位取反;
负数的原码:补码加1;
正数的原码:补码;

  • 两个正数相加:
// 补码表示法
0000, 1110 + 0000, 0001 = 0000, 1111 // 14 + 1 = 15 正确
^            ^            ^
符号位        符号位        符号位
  • 两个负数相加:
// 补码表示法
1111, 0010 + 1111, 1111 = 1111, 0001(补码) 转为原码显示 1000, 1111(原码) // (-14) + (-1) = -15 正确
^            ^            ^
符号位        符号位        符号位(最高位的 1 溢出)
  • 正负数相加:
// 补码表示法
0000, 1110 + 1111, 1111 = 0000, 1101 // 14 + (-1) = 13 正确
^            ^            ^
符号位        符号位        符号位(最高位的 1 溢出)

可以看到,使用补码表示法后,有符号机器数加法运算就只是纯粹的加法运算,不会因为符号的正负性而采用不同的计算方法,也不需要减法运算。因此电路设计中只需要设置加法器和补数器,就可以完成有符号数的加法和减法运算,能够简化电路设计。
除了消除减法运算外,补码表示法还实现了 “0” 的机器数的唯一性

在原码表示法中,“+0” 和 “-0” 都是合法的,而在补码表示法中 “0” 只有唯一的机器数表示,即 0000, 0000 。换言之补码能够比原码多表示一个最小的负数 1000, 0000

最后提供按照不同表示法解释二进制机器数后得到的真值对比:
在这里插入图片描述

6. 补码我懂了,但是为什么?

理解原码和补码的定义不难,理解补码作用也不难,难的是理解补码是怎么设计出来的,总不可能是被树上的苹果砸到后想到的吧?

这就要提到数学中的 “补数” 概念:

  • 1、当一个正数和一个负数互为补数时,它们的绝对值之和就是模;
  • 2、一个负数可以用它的正补数代替。
6.1 时钟里的补数

听起来很抽象对吧❓其实生活中,就有一个更加形象的例子 —— 时钟,时钟里就蕴含着补数的概念!

比如说,现在时钟的时针刻度指向 6 点,我们想让它指向 3 点,应该怎么做:

  • 方法 1 : 逆时针地拨动 3 个点数,让时针指向 3 点,这相当于做减法运算 -3;
  • 方法 2: 顺时针地拨动 9 个点数,让时针指向 3 点,这相当于做加法运算 +9。

可以看到,对于时钟来说 -3 和 +9 竟然是等价的! 这是因为时钟只能 12 个小时,当时间点数超过 12 时就会自动丢失,所以 15 点和 3 点在时钟看来是都是 3 点。如果我们要在时钟上进行 6 - 3 减法运算,我们可以将 -3 等价替换为它的正补数 +9 后参与计算,从而将减法运算替换为 6 + 9 加法运算,结果都是 3
在这里插入图片描述

6.2 十进制的例子

理解了补数的概念后,我们再多看一个十进制的例子:我们要计算十进制 354365 - 95937 = 的结果,怎么做呢?

  • 方法 1 - 借位做减法: 常规的做法是利用连续向前借位做减法的方式计算,这没有问题;
  • 方法 2 - 减模加补: 使用补数的概念后,我们就可以将减法运算消除为加法运算。
    具体来说,如果我们限制十进制数的位长最多只有 6 位,那么模就是 1000000,-95937 对应的正补数就是 1000000 - 95937 = 904063 。此时,我们可以直接用正补数代替负数参与计算,则有:
354365 - 95937 // = 258428
= 354365 - (1000000 - 904063)
= 354365 - 1000000 + 904063 【减整加补】
= 258428

可以看到,把 -95937 等价替换为 +904063 后,就把减法运算替换为加法运算。细心的你可能要举手提问了,还是需要减去 1000000 呀?🙋🏻‍♀️
其实并不用,因为 1000000 是超过位数限制的,所以减去 1000000 这一步就像时针逆时针拨动一整圈一样是无效的。所以实际上需要计算的是:

// 实际需要计算的是:
354365 + 904063
= 1258428 = 258428
  ^
  最高位 1 超出位数限制,直接丢弃
6.3 为什么要使用补码?

继续使用前文提到的 14 + (-1) 正负数相加的例子:

// 原码表示法
0000, 1110 + 1000, 0001 = 1001, 1111 // 14 + (-1) = -15 错误
^            ^            ^
符号位        符号位        符号位

// 补码表示法
0000, 1110 + 1111, 1111 = 1, 0000, 1101 // 14 + (-1) = 13 正确
^            ^            ^
符号位        符号位        最高位 1 超出位数限制,直接丢弃

如果我们限制二进制数字的位长最多只有 8 位,那么模就是 1, 0000, 0000 ,此时,-1 的二进制数 1000, 0001 的正补数就是 1111, 1111
我们使用正补数 1111, 1111 代替负数 1000, 0001 参与运算,加法运算后的结果是 1, 0000, 1101。其中最高位 1 超出位数限制,直接丢弃,所以最终结果是 0000, 1101,也就是 13,计算正确。

在这里插入图片描述
到这里,相信补码的设计原理已经很清楚了。
补码的关键在于:找到一个与负数等价的正补数,使用该正补数代替负数,从而将减法运算替换为两个正数加法运算。 补码的出现与运算器的电路设计有关,从设计者的角度看,希望尽可能简化电路设计和计算复杂度。而使用正补数代替负数就可以消除减法器,实现简化电路的目的。

所以,只有负数才存在补码,正数本身就是正数,根本就没必要使用补数,更不需要转为补码。而且正数使用补码的话,还不能把负数转补码的算法用在正数上,还得强行加一条 “正数的补码是原码本身” 的规则,就离谱好吧。

7. 总结
  • 1、无符号数的编码中的每一位都可以用来存放数值信息,而有符号数需要在最高位留出一位符号位;
  • 2、在有符号数的机器数运算中,需要对正数和负数采用不同的计算方法,而且需要引入减法器;
  • 3、为了解决有符号机器数运算效率问题,计算机科学家们提出多种机器数的表示法:原码、反码、补码和移码;
  • 4、使用补码表示法后,运算器可以消除减法运算,而且实现了 “0” 的机器数的唯一性;
  • 5、补码的关键是找到一个与负数等价的正补数,使用该正补数代替负数参与计算,从而将减法运算替换为加法运算。
位运算理解:

n >> k:代表n右移k位 比如 000011 >> 1 = 000001 前面会补零(所以第几位是从0开始计算)
n & 1:表示最后一位是否为1
比如:n = 3 = 00111 = 00013 & 1 = 0011 & 0001 为0001可以用来判断最后一位是否为1

lowbit操作,树状数组的基本操作:
lowbit(x)作用是返回x的最后一位1 最右边的一位1。
返回的是一个二进制数,返回最高位的一位1就是最后一位1
例如:x=1010,lowbit(x)=10
x=101000,lowbit(x)=1000

lowbot实现:
就是 x & -x,那么它为什么能返回最后一位1呢?
C++中一个数的负数是原码的补码(取反+1), -x = ~x + 1(负数x是在其负数补码基础上加1)

比如 这里1是最后一位1
原码 x = 1010…100…0
取反后这个0是最后一位0
反码 ~x = 0101…011…1
取反+1 到红色最后一位1以后,不会再往前进位
~x + 1 = 0101…100…0

取到了最后一位1
-x & ~x + 1 = 0000…100......0
在这里插入图片描述

原码、反码、补码

对于一个数,计算机要使用一定的编码方式进行二进制存储,二进制存储是计算机存储的本质。
原码反码补码是机器存储一个具体数字的编码方式,计算机是以二进制补码的形式进行数据的存储。

原码

原码就是符号位加上真值的绝对值,即用最高位表示符号,其余位表示值。比如如果是8位二进制:

  • [+1] (原码) = 0000 0001 最高位为0,表示正数
  • [ -1] (原码) = 1000 0001 最高位为1,表示负数
反码

反码表示方式是用来处理负数的,正数的反码是其本身,负数的反码是在其原码的基础上,符号位不变,其余各个位取反。

  • [+1] = [00000001] (原码) = [00000001] (反码)
  • [ -1] = [10000001] (原码) = [11111110] (反码)
补码

补码的表示方法是:正数的补码就是其本身,负数的补码是在其原码的基础上,符号位不变,其余各位取反,最后+1(即在反码的基础上+1)

  • [+1] = [00000001] (原码) = [00000001] (反码) = [00000001] (补码)
  • [ -1] = [10000001] (原码) = [11111110] (反码) = [11111111] (补码)
位运算最常用的两种操作:

1.求整数n二进制表示中第k位(从个位开始算)数字是几:n >> k & 1

  • 先把第k位数字移到最后一位 n >> k
  • 再看一下个位是几 x & 1

从最高位右移,再与1做与运算,输出二进制表示

int main()
{
	int n = 10;
	for(int k = 3; k >= 0; k --) cout << (n >> k & 1); 
    return 0;
}

结果:1010

在这里插入图片描述

  1. 求一个 数二进制中1的个数:
  • 在我们的机器上,int数据类型是32位;
  • 因此,我们将1从最低位一直移动到最高位,并将每一位与输出的数值a 做 与运算
  • 如果a对应位是1,则将计数器 cnt+1,最终 cnt 就是该整数二进制数中1的个数。
#include <iostream>
using namespace std;

int lowbit(int x)
{
	return x & -x;
}

int main()
{
	int n;
	cin >> n;
	while(n --){
		int x;
		cin >> x;
		
		int res = 0;
		// 每次减去x的最后一位1 
		while(x) x -= lowbit(x), res ++;
		
		cout << res << ' ';
	}
	
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小凡学编程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值