1. 研究问题
代价聚合是获取准确视差估计的关键步骤,目前基于深度学习的方法中,代价聚合有的基于传统方法,有的基于2D/3D convolution的方法,基于传统方法的代价聚合容易在无纹理、高反射、高光区域产生误匹配,而基于2D/3D convolution方法的代价聚合由于频繁的下采样和上采样,容易模糊薄结构和对象边缘,且占用大量内存和消耗大量时间。
2. 研究方法
提出引导聚合网络GA-Net,核心部分是两个引导代价聚合层,分别是半全局引导聚合层SGA和局部引导聚合层LGA,其中,SGA实现了SGM算法的可微近似,可以提高遮挡区域、无纹理、高反射区域的视差精度,LGA在局部进行代价聚合,解决由于下采样和上采样引起的薄结构和边缘的精度损失。这两个层可用于替代广泛使用的 3D 卷积层,从而降低内存占用和计算复杂度。
SGA
SGA采用四路径的代价聚合,并且取匹配分数最高的代价作为最终的代价。
这样做是为了去除其他路径对代价造成模糊。SGA可以重复进行多次,以取得更好的代价空间。
LGA
网络结构
损失函数
- smooth
L
1
L_1
L1 loss function
这种视差回归函数比基于分类的方法更加鲁棒,并且能够产生亚像素精度。
3. 实验结果
消融实验
引导聚合的作用
SGMs和3D convolutions 的比较
和实时算法的比较
Benchmark
4. 结论
所提出的方法在场景流数据集和 KITTI 测试上都达到了最先进的精度,并且运行速度为15~20fps
。
5. 启发
可以利用引导聚合层来代替3D convolution。