《GA-Net: Guided Aggregation Net for End-to-end Stereo Matching》

本文提出了引导聚合网络GA-Net,针对基于深度学习的视差估计中的问题,通过半全局引导聚合层SGA和局部引导聚合层LGA改进代价聚合过程。SGA模仿SGM算法实现可微近似,增强遮挡和困难区域的精度,而LGA则在局部优化,减少对薄结构和边缘的模糊。实验结果显示,GA-Net在精度和运行速度上优于传统方法和3D卷积,达到实时处理的水平。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


代码


1. 研究问题

代价聚合是获取准确视差估计的关键步骤,目前基于深度学习的方法中,代价聚合有的基于传统方法,有的基于2D/3D convolution的方法,基于传统方法的代价聚合容易在无纹理、高反射、高光区域产生误匹配,而基于2D/3D convolution方法的代价聚合由于频繁的下采样和上采样,容易模糊薄结构和对象边缘,且占用大量内存和消耗大量时间。

2. 研究方法

提出引导聚合网络GA-Net,核心部分是两个引导代价聚合层,分别是半全局引导聚合层SGA和局部引导聚合层LGA,其中,SGA实现了SGM算法的可微近似,可以提高遮挡区域、无纹理、高反射区域的视差精度,LGA在局部进行代价聚合,解决由于下采样和上采样引起的薄结构和边缘的精度损失。这两个层可用于替代广泛使用的 3D 卷积层,从而降低内存占用和计算复杂度。

SGA

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

SGA采用四路径的代价聚合,并且取匹配分数最高的代价作为最终的代价。

在这里插入图片描述
这样做是为了去除其他路径对代价造成模糊。SGA可以重复进行多次,以取得更好的代价空间。

LGA

在这里插入图片描述

网络结构

在这里插入图片描述
在这里插入图片描述

损失函数

  • smooth L 1 L_1 L1 loss function
    在这里插入图片描述
    在这里插入图片描述
    这种视差回归函数比基于分类的方法更加鲁棒,并且能够产生亚像素精度。

3. 实验结果

消融实验

在这里插入图片描述

引导聚合的作用

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

SGMs和3D convolutions 的比较

在这里插入图片描述
在这里插入图片描述

和实时算法的比较

在这里插入图片描述

Benchmark

在这里插入图片描述
在这里插入图片描述

4. 结论

所提出的方法在场景流数据集和 KITTI 测试上都达到了最先进的精度,并且运行速度为15~20fps

5. 启发

可以利用引导聚合层来代替3D convolution。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值