现在的端到端单目/双目深度估计网络一般在大型合成数据集(比如SceneFlow,Cityscapes)上进行预训练,然后通过少量的真实数据集(比如KITTI,Middlebury)微调使其适应不同的环境。然而现有网络依然难以适应于未见过的真实环境,而且获取足够的真实视差图和对应的立体图像对难度巨大,因此研究人员研究基于无监督学习的深度估计网络。
下面列举出近年来的几篇关于无监督学习的深度估计网络的论文。
论文链接:
现在的端到端单目/双目深度估计网络一般在大型合成数据集(比如SceneFlow,Cityscapes)上进行预训练,然后通过少量的真实数据集(比如KITTI,Middlebury)微调使其适应不同的环境。然而现有网络依然难以适应于未见过的真实环境,而且获取足够的真实视差图和对应的立体图像对难度巨大,因此研究人员研究基于无监督学习的深度估计网络。
下面列举出近年来的几篇关于无监督学习的深度估计网络的论文。
论文链接: