无监督学习方法

近年来,研究人员致力于解决深度估计网络在现实环境中的适应性问题,尤其是通过无监督学习来减少对大量真实数据的依赖。文章列举了如《Unsupervised Monocular Depth Estimation with Left-Right Consistency》等论文,这些工作展示了如何利用无监督学习方法在没有标注数据的情况下训练深度估计网络,从而提高其在不同环境中的泛化能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

现在的端到端单目/双目深度估计网络一般在大型合成数据集(比如SceneFlow,Cityscapes)上进行预训练,然后通过少量的真实数据集(比如KITTI,Middlebury)微调使其适应不同的环境。然而现有网络依然难以适应于未见过的真实环境,而且获取足够的真实视差图和对应的立体图像对难度巨大,因此研究人员研究基于无监督学习的深度估计网络。

下面列举出近年来的几篇关于无监督学习的深度估计网络的论文。

在这里插入图片描述

论文链接:

  1. 《Unsupervised Monocular Depth Estimation with Left-Right Consistency》
  2. 《Unsupervised Adaptation for Deep Stereo》
  3. 《ActiveStereoNet: End-to-End Self-Supervised Learning for Active Stereo Systems》
  4. 《PVStereo: Pyramid Voting Module for End-to-End Self-Supervised Stereo Matching》
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值