目录
蚁群算法原理
蚁群算法的基本原理来源于自然界蚂蚁觅食的最短路径原理,蚂蚁在寻找食物源时,能在其走过的路径上释放一种蚂蚁特有的分泌物–信息素,使得一定范围内的其他蚂蚁能够察觉到并由此影响他们以后的行为。当一些路径上通过的蚂蚁越来越多时,其留下的信息素也越来越多,以致信息素强度增大,所以蚂蚁选择选该路径的概率也越高,从而更增加了该路径的信息素强度,这种选择过程被称为蚂蚁的自催化行为。
蚁群算法基本流程
• 在ACO 算法中,人工蚂蚁实际上代表的是一个解的随机构 建过程,从最初的空解开始,通过不断地向部分解添加解的成分而构建出一个完整的解
• AS算法对TSP的求解主要有两大步骤:
• 1、路径构建
每只蚂蚁都随机选择一个城市作为其出发城市,并维护一个路径记忆向量,用来存放该蚂蚁依次经过的城市。蚂蚁在构建路径的每一步中,按照一个随机比例规则选择下一个要到达的城市。
• 2、信息素更新
在算法初始化时,问题空间中所有的边上的信息素都被初始化。如果初始值太小,算法容易早熟,即蚂蚁很快就全部集中在一条局部最优的路径上。反之,如果初始值太大,信息素对搜索方向的指导作用太低,也会影响算法性能。
蚁群算法实现TSP问题实验
实验数据
数据分别是31个城市的坐标位置信息
实验步骤
1.数据准备
2.计算城市距离矩阵
3.初始化参数
4.迭代寻找最佳路径
5.结果显示
实验描述
该实验主要是通过蚁群算法解决TSP问题,并且通过迭代次数和搜寻的最短路径比较寻找较为适合的信息素重要程度因子、启发函数重要程度因子、信息素挥发因子
m = 50; % 蚂蚁数量
alpha = 1; % 信息素重要程度因子
beta = 5; % 启发函数重要程度因子
rho = 0.1; % 信息素挥发因子
Q = 1; % 常系数
Eta = 1./D; % 启发函数
Tau = ones(n,n); % 信息素矩阵
Table = zeros(m,n); % 路径记录表
iter = 1; % 迭代次数初值
iter_max = 100; % 最大迭代次数
Route_best = zeros(iter_max,n); % 各代最佳路径
Length_best = zeros(iter_max,1); % 各代最佳路径的长度
Length_ave = zeros(iter_max,1); % 各代路径的平均长度
实验代码
%% 旅行商问题(TSP)优化
%% 清空环境变量
clear all
clc
%% 导入数据
load citys.mat
%% 计算城市间相互距离
fprintf('Computing Distance Matrix... \n');
n = size(citys,1);
D = zeros(n,n);
for i = 1:n
for j = 1:n
if i ~= j
D(i,j) = sqrt(sum((citys(i,:) - citys(j,:)).^2));
else
D(i,j) = 1e-4;
end
end
end
%% 初始化参数
fprintf('Initializing Parameters... \n');
m = 50; % 蚂蚁数量
alpha = 1; % 信息素重要程度因子
beta = 5; % 启发函数重要程度因子
rho = 0.1; % 信息素挥发因子
Q = 1; % 常系数
Eta = 1./D; % 启发函数
Tau = ones(n,n); % 信息素矩阵
Table = zeros(m,n); % 路径记录表
iter = 1; % 迭代次数初值
iter_max = 100; % 最大迭代次数
Route_best = zeros(iter_max,n); % 各代最佳路径
Length_best = zeros(iter_max,1); % 各代最佳路径的长度
Length_ave = zeros(iter_max,1); % 各代路径的平均长度
%% 迭代寻找最佳路径
figure;
while iter <= iter_max
fprintf('迭代第%d次\n',iter);
% 随机产生各个蚂蚁的起点城市
start = zeros(m,1);
for i = 1:m
temp = randperm(n);
start(i) = temp(1);
end
Table(:,1) = start;
% 构建解空间
citys_index = 1:n;
% 逐个蚂蚁路径选择
for i = 1:m
% 逐个城市路径选择
for j = 2:n
tabu = Table(i,1:(j - 1)); % 已访问的城市集合(禁忌表)
allow_index = ~ismember(citys_index,tabu);
allow = citys_index(allow_index); % 待访问的城市集合
P = allow;
% 计算城市间转移概率
for k = 1:length(allow)
P(k) = Tau(tabu(end),allow(k))^alpha * Eta(tabu(end),allow(k))^beta;
end
P = P/sum(P);
% 轮盘赌法选择下一个访问城市
Pc = cumsum(P);
target_index = find(Pc >= rand);
target = allow(target_index(1));
Table(i,j) = target;
end
end
% 计算各个蚂蚁的路径距离
Length = zeros(m,1);
for i = 1:m
Route = Table(i,:);
for j = 1:(n - 1)
Length(i) = Length(i) + D(Route(j),Route(j + 1));
end
Length(i) = Length(i) + D(Route(n),Route(1));
end
% 计算最短路径距离及平均距离
if iter == 1
[min_Length,min_index] = min(Length);
Length_best(iter) = min_Length;
Length_ave(iter) = mean(Length);
Route_best(iter,:) = Table(min_index,:);
else
[min_Length,min_index] = min(Length);
Length_best(iter) = min(Length_best(iter - 1),min_Length);
Length_ave(iter) = mean(Length);
if Length_best(iter) == min_Length
Route_best(iter,:) = Table(min_index,:);
else
Route_best(iter,:) = Route_best((iter-1),:);
end
end
% 更新信息素
Delta_Tau = zeros(n,n);
% 逐个蚂蚁计算
for i = 1:m
% 逐个城市计算
for j = 1:(n - 1)
Delta_Tau(Table(i,j),Table(i,j+1)) = Delta_Tau(Table(i,j),Table(i,j+1)) + Q/Length(i);
end
Delta_Tau(Table(i,n),Table(i,1)) = Delta_Tau(Table(i,n),Table(i,1)) + Q/Length(i);
end
Tau = (1-rho) * Tau + Delta_Tau;
% 迭代次数加1,清空路径记录表
% figure;
%最佳路径的迭代变化过程
[Shortest_Length,index] = min(Length_best(1:iter));
Shortest_Route = Route_best(index,:);
plot([citys(Shortest_Route,1);citys(Shortest_Route(1),1)],...
[citys(Shortest_Route,2);citys(Shortest_Route(1),2)],'o-');
pause(0.3);
iter = iter + 1;
Table = zeros(m,n);
% end
end
%% 结果显示
[Shortest_Length,index] = min(Length_best);
Shortest_Route = Route_best(index,:);
disp(['最短距离:' num2str(Shortest_Length)]);
disp(['最短路径:' num2str([Shortest_Route Shortest_Route(1)])]);
%% 绘图
figure(1)
plot([citys(Shortest_Route,1);citys(Shortest_Route(1),1)],...
[citys(Shortest_Route,2);citys(Shortest_Route(1),2)],'o-');
grid on
for i = 1:size(citys,1)
text(citys(i,1),citys(i,2),[' ' num2str(i)]);
end
text(citys(Shortest_Route(1),1),citys(Shortest_Route(1),2),' 起点');
text(citys(Shortest_Route(end),1),citys(Shortest_Route(end),2),' 终点');
xlabel('城市位置横坐标')
ylabel('城市位置纵坐标')
title(['蚁群算法优化路径(最短距离:' num2str(Shortest_Length) ')'])
figure(2)
plot(1:iter_max,Length_best,'b',1:iter_max,Length_ave,'r:')
legend('最短距离','平均距离')
xlabel('迭代次数')
ylabel('距离')
title('各代最短距离与平均距离对比')
实验过程和结果
实验共进行了12次,这里选取了其中8次结果作为展示,每次实验通过控制变量法逐一测试信息素重要程度因子、启发函数重要程度因子、信息素挥发因子
1.alpha = 1; beta = 5; rho = 0.1;
2.alpha = 1; beta = 5; rho = 0.2;
3.alpha = 1; beta = 5; rho = 0.05;
4.alpha = 1; beta = 4; rho = 0.1;
5.alpha = 1; beta = 6; rho = 0.1;
6.alpha = 2; beta = 5; rho = 0.1;
7.alpha = 2; beta = 7; rho = 0.1;
8.alpha = 1; beta = 5; rho = 0.5;
实验结果分析
经过多次选值测试,可以看到:
1)当信息素挥发因子太过于小特别是小于0.1的时候,会导致实验过早的在迭代10次后就确定了路径,但是得到的路径却不是正确的最短路径并且实验结果相差较大
2)当信息素挥发因子过于大特别是大于0.2的时候,也会导致实验过早的在迭代20次后就确定了路径,但是得到的路径却不是正确的最短路径
3)当启发函数重要程度因子小于5和大于5的时候,最终实验迭代次数都会相应减少,得到的最短路径距离和等于5时有所偏差
4)当信息素重要程度因子大于1时,实验在50~60代时就确定了最终结果,但是得到的最短距离也是稍大
实验总结
1)信息素重要程度因子越大,蚂蚁选择之前走过的路径可能性就越大,搜索路径的随机性就减弱,信息素重要程度因子越小,蚁群搜索范围就会减少,容易陷入局部最优
2)启发函数重要程度因子值越大,蚁群就越容易选择局部较短路径,这时算法的收敛速度是加快了,但是随机性不高,容易得到局部的相对最优
3)信息素挥发因子过小时,在各路径上的残留的信息素过多,导致无效的路径继续被搜索,影响到算法的收敛速率;信息素挥发因子过大时,无效的路径虽然可以被排除搜索,但是不能保证正确路径不会被放弃搜索,影响到最优值的搜索
4)通过进行的12组实验调节参数,权衡迭代次数和最短路径距离,可以发现alpha = 1; beta = 5; rho = 0.1是这组实验数据解决TSP问题的比较准确的设定参数。