证明(1+1/n)^n<(1+1/(n+1))^(n+1)

证明 ( 1 + 1 n ) n < ( 1 + 1 n + 1 ) ( n + 1 ) (1+\frac{1}{n})^{n}<(1+\frac{1}{n+1})^{(n+1)} (1+n1)n<(1+n+11)(n+1)

也就是要证明:
( n + 1 n ) n < ( n + 2 n + 1 ) ( n + 1 ) (1) (\frac{n+1}{n})^{n}<(\frac{n+2}{n+1})^{(n+1)}\tag{1} (nn+1)n<(n+1n+2)(n+1)(1)

将上面不等式的左右两边进行二项式展开,有如下形式:
( 1 + 1 n ) n = 1 + C n 1 ( 1 n ) 1 + C n 2 ( 1 n ) 2 + C n 3 ( 1 n ) 3 + ⋯ + C n n − 1 ( 1 n ) n − 1 + C n n ( 1 n ) n (2) (1+\frac{1}{n})^{n}=1+C_n^1(\frac{1}{n})^1+C_n^2(\frac{1}{n})^2+C_n^3(\frac{1}{n})^3+\cdots+C_n^{n-1}(\frac{1}{n})^{n-1}+C_n^n(\frac{1}{n})^n\tag{2} (1+n1)n=1+Cn1(n1)1+Cn2(n1)2+Cn3(n1)3++Cnn1(n1)n1+Cnn(n1)n(2)
共有n+1项;
( 1 + 1 ( n + 1 ) ) ( n + 1 ) = 1 + C n + 1 1 ( 1 n + 1 ) 1 + C n + 1 2 ( 1 n + 1 ) 2 + C n + 1 3 ( 1 n + 1 ) 3 + ⋯ + C n + 1 n − 1 ( 1 n + 1 ) n − 1 + C n + 1 n ( 1 n + 1 ) n + C n + 1 n + 1 ( 1 n + 1 ) n + 1 (3) (1+\frac{1}{(n+1)})^{(n+1)}=1+C_{n+1}^1(\frac{1}{n+1})^1+C_{n+1}^2(\frac{1}{n+1})^2+C_{n+1}^3(\frac{1}{n+1})^3+\cdots\\ +C_{n+1}^{n-1}(\frac{1}{n+1})^{n-1}+C_{n+1}^{n}(\frac{1}{n+1})^{n}+C_{n+1}^{n+1}(\frac{1}{n+1})^{n+1}\tag{3} (1+(n+1)1)(n+1)=1+Cn+11(n+11)1+Cn+12(n+11)2+Cn+13(n+11)3++Cn+1n1(n+11)n1+Cn+1n(n+11)n+Cn+1n+1(n+11)n+1(3)
共有n+2项;

比较式(2)和(3)的右侧展开式子,第一项都是1,从第2项到第n+1项皆有对应,而只有式(3)具有第n+2项 C n + 1 n + 1 ( 1 n + 1 ) n + 1 C_{n+1}^{n+1}(\frac{1}{n+1})^{n+1} Cn+1n+1(n+11)n+1。这种情况下只需证明:
C n m ( 1 n ) m ≤ C n + 1 m ( 1 n + 1 ) m , 1 ≤ m ≤ n (4) C_{n}^{m}(\frac{1}{n})^{m}\leq C_{n+1}^{m}(\frac{1}{n+1})^{m},1\leq m\leq n\tag{4} Cnm(n1)mCn+1m(n+11)m,1mn(4)
而我们知道,
C n m = n ∗ ⋯ ∗ ( n + 1 − m ) m ! , 1 ≤ m ≤ n (5) C_{n}^{m}=\frac{n*\cdots*(n+1-m)}{m!},1\leq m\leq n\tag{5} Cnm=m!n(n+1m),1mn(5)
(4)代入(5)可得:
左 边 = 1 m ! ∗ n − 1 n ∗ n − 2 n ∗ ⋯ ∗ n + 1 − m n 右 边 = 1 m ! ∗ n + 1 − 1 n + 1 ∗ n + 1 − 2 n + 1 ∗ ⋯ ∗ n + 1 + 1 − m n + 1 (6) 左边=\frac{1}{m!}*\frac{n-1}{n}*\frac{n-2}{n}*\cdots*\frac{n+1-m}{n} \\ 右边=\frac{1}{m!}*\frac{n+1-1}{n+1}*\frac{n+1-2}{n+1}*\cdots*\frac{n+1+1-m}{n+1}\tag{6} =m!1nn1nn2nn+1m=m!1n+1n+11n+1n+12n+1n+1+1m(6)
显然我们有
n + 1 − m n < n + 1 + 1 − m n + 1 , 1 ≤ m ≤ n (7) \frac{n+1-m}{n}<\frac{n+1+1-m}{n+1},1\leq m\leq n\tag{7} nn+1m<n+1n+1+1m,1mn(7)
根据(7)可知,(6)式中左边小于右边。因此(4)得证,则可推出(2)式小于(3)式,则(1)式得证。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值