POJ2279 五维线性dp

POJ2279 五维线性dp(动态规划入门)

题面
POJ2279题面

思路
从头开始系统的学dp,做题目一定要理清dp的五大因素

状态表示用dp[ a 1 , a 2 , a 3 , a 4 , a 5 a_1,a_2,a_3,a_4,a_5 a1,a2,a3,a4,a5]表示第i行上已经插入了 a i a_i ai个人的排队方法数
阶段划分已经在各排分配了制定人数的方法数(对应一个五元组)
转移方程写不下了^ _ ^下面单列
边界dp[0,0,0,0,0]=1,其余均为0
目标dp[ k 1 , k 2 , k 3 , k 4 , k 5 k_1,k_2,k_3,k_4,k_5 k1,k2,k3,k4,k5]

转移方程及其理解:
d p [ a 1 , a 2 , a 3 , a 4 , a 5 ] = { d p [ a 1 , a 2 , a 3 , a 4 , a 5 ] + d p [ a 1 − 1 , a 2 , a 3 , a 4 , a 5 ] ( a 1 ≥ 1   a n d   a 1 ≤ k 1 ) d p [ a 1 , a 2 , a 3 , a 4 , a 5 ] + d p [ a 1 , a 2 − 1 , a 3 , a 4 , a 5 ] ( 1 ≤ a 2 ≤ a 1   a n d   a 2 ≤ k 2 ) ⋮ d p [ a 1 , a 2 , a 3 , a 4 , a 5 ] + d p [ a 1 , a 2 , a 3 , a 4 , a 5 − 1 ] ( 1 ≤ a 5 ≤ a 4   a n d   a 5 ≤ k 5 ) dp[a_1,a_2,a_3,a_4,a_5] = \begin {cases} dp[a_1,a_2,a_3,a_4,a_5]+dp[a_1-1,a_2,a_3,a_4,a_5] (a_1\geq 1 \space and \space a_1\leq k_1)\\ dp[a_1,a_2,a_3,a_4,a_5]+dp[a_1,a_2-1,a_3,a_4,a_5] (1 \leq a_2\leq a_1 \space and \space a_2\leq k_2)\\ \vdots \\ dp[a_1,a_2,a_3,a_4,a_5]+dp[a_1,a_2,a_3,a_4,a_5-1] (1 \leq a_5\leq a_4 \space and \space a_5\leq k_5) \end {cases} dp[a1,a2,a3,a4,a5]=dp[a1,a2,a3,a4,a5]+dp[a11,a2,a3,a4,a5](a11 and a1k1)dp[a1,a2,a3,a4,a5]+dp[a1,a21,a3,a4,a5](1a2a1 and a2k2)dp[a1,a2,a3,a4,a5]+dp[a1,a2,a3,a4,a51](1a5a4 and a5k5)
其实状态的寻找是不好做的,对于最终目标,如何找出表示目标的维度,如何分解问题,使其在求解每个子问题的"阶段"都具有"子问题重叠性",“无后效性"和"最优子结构性质”。

性质解释
子问题重叠性问题可划分成多个子问题,并且子问题具有相似性,可以归纳
无后效性已经求解的子问题不受后续阶段的影响
最优子结构性质下一阶段的最优解能够由前面各阶段的子问题的最优解导出

这三个性质是判断寻找的状态是否具有动态规划条件的性质。
能想到的是,对于一个人的状态肯定可以计算,用一个人算两个人的状态也可以算,而后面的状态加一个人好像也可以算,仔细想一下,如果自己打个表的话,可以从1开始人数一个一个向上推(其实就是动态规划的模拟),想到这种模拟,基本上三个性质都具备了(请读者自行思考),如果想到人数为维度的话,为了能够表示每一排的情况,容易想到用五元组表示状态的方法。
对于初态,如果五个空都没有一个人的话,肯定默认只有一种排法,所以dp[0,0,0,0,0]=1,对于刚刚所谓的一个人一个人地向上推,其实就是对于当前状态对于五元组每一个元讨论少一个人的情况,假设我们插人是从低到高插入的,那个人排在哪一排反正是从低到高排肯定在是固定的在排首的,其实就是其他人的站位影响了照相顺序,也就是加上其他人站位的方法数即可(就是 + d p [ a 1 , a 2 − 1 , a 3 , a 4 , a 5 ] +dp[a_1,a_2-1,a_3,a_4,a_5] +dp[a1,a21,a3,a4,a5]这类的原因 ),但是这保证了每一排是从低到高,但要保证每一列从低到高,那就要当第i-1排比i排少人的时候,就不能排在第i排,因为下面总有一个更高的要插在i-1排,就不是从低到高了,同时还要满足插人不多于给出的限制,那就是 ( 1 ≤ a i ≤ a i − 1   a n d   a i ≤ k i ) (1 \leq a_i\leq a_i-1 \space and \space a_i\leq k_i) (1aiai1 and aiki)了呗

注意事项
1)dp一般0数组的0轴是初态,所以一般循环要<=限制,答案访问上界而不是上界-1
2)要注意数组(无向图)的遍历的范围,不要少了也不要越界
3)函数内部按大小直接声明dp数组,否则会MLE(C++14以上的编译器数组可以直接用变量声明)

代码

//这个是按照上面的转移方程写的,是在此状态访问上一次状态的情况
#include <iostream>
#include <cstring>
using namespace std;
typedef long long ll;
const int maxn = 31;

int nk[6];

int main()
{

    int k;
    while(cin >> k && k)
    {
        memset(nk,0,sizeof(nk));
        for(int i = 0;i <k;i++)
        {
            cin >> nk[i];
        }
        ll dp[nk[0]+1][nk[1]+1][nk[2]+1][nk[3]+1][nk[4]+1];
        memset(dp,0,sizeof(dp));
        dp[0][0][0][0][0] = 1;
        for(int i = 0;i <= nk[0];i++)
        {
            for(int j = 0;j <= nk[1];j++)
            {
                for(int p = 0;p <= nk[2];p++)
                {
                    for(int l = 0;l <= nk[3];l++)
                    {
                         for(int m = 0;m <= nk[4];m++)
                        {
                            if(i)dp[i][j][p][l][m] += dp[i-1][j][p][l][m];
                            if(j && j <= i)dp[i][j][p][l][m] += dp[i][j-1][p][l][m];
                            if(p && p <= j)dp[i][j][p][l][m] += dp[i][j][p-1][l][m];
                            if(l && l <= p)dp[i][j][p][l][m] += dp[i][j][p][l-1][m];
                            if(m && m <= l)dp[i][j][p][l][m] += dp[i][j][p][l][m-1];
                        }
                    }
                }
            }
        }
        cout << dp[nk[0]][nk[1]][nk[2]][nk[3]][nk[4]]<<endl;
    }
    return 0;
}

//这个是按照令i+1->i写的,就是从此状态计算下一次状态的情况,那不是i>=1了,
//需要在i ==k[1]的时候阻止其进一步向下求,也就是要有(i < n[1])的判断
#include <cstdio>
#include <cstring>
#include <iostream>
typedef long long ll;
using namespace std;
int n[6], k;

void work() {
	for (int i = 1; i <= k; i++) cin >> n[i];
	while (k < 5) n[++k] = 0;
	ll f[n[1]+1][n[2]+1][n[3]+1][n[4]+1][n[5]+1];
	memset(f, 0, sizeof(f));
	f[0][0][0][0][0] = 1;
	for (int i = 0; i <= n[1]; i++)
		for (int j = 0; j <= n[2]; j++)
			for (int k = 0; k <= n[3]; k++)
				for (int l = 0; l <= n[4]; l++)
					for (int m = 0; m <= n[5]; m++) {
						if (i < n[1]) f[i+1][j][k][l][m] += f[i][j][k][l][m];
						if (j < n[2] && i > j) f[i][j+1][k][l][m] += f[i][j][k][l][m];
						if (k < n[3] && j > k) f[i][j][k+1][l][m] += f[i][j][k][l][m];
						if (l < n[4] && k > l) f[i][j][k][l+1][m] += f[i][j][k][l][m];
						if (m < n[5] && l > m) f[i][j][k][l][m+1] += f[i][j][k][l][m];
					}
	cout << f[n[1]][n[2]][n[3]][n[4]][n[5]] << endl;
}

int main() {
	while (cin >> k && k) work();
	return 0;
}

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
题目描述 给出一个$n\times m$的矩阵,每个位置上有一个非负整数,代表这个位置的海拔高度。一开始时,有一个人站在其中一个位置上。这个人可以向上、下、左、右四个方向移动,但是只能移动到海拔高度比当前位置低或者相等的位置上。一次移动只能移动一个单位长度。定义一个位置为“山顶”,当且仅当从这个位置开始移动,可以一直走到海拔高度比它低的位置上。请问,这个矩阵中最多有多少个“山顶”? 输入格式 第一行两个整数,分别表示$n$和$m$。 接下来$n$行,每行$m$个整数,表示整个矩阵。 输出格式 输出一个整数,表示最多有多少个“山顶”。 样例输入 4 4 3 2 1 4 2 3 4 3 5 6 7 8 4 5 6 7 样例输出 5 算法1 (递归dp) $O(nm)$ 对于这道题,我们可以使用递归DP来解决,用$f(i,j)$表示以$(i,j)$为起点的路径最大长度,那么最后的答案就是所有$f(i,j)$中的最大值。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码 算法2 (动态规划) $O(nm)$ 动态规划的思路与递归DP类似,只不过转移方程和实现方式有所不同。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值