POJ 2279

线性DP

本题的正解是杨氏矩阵与钩子定理
但是这道题用DP的思想非常好
img
但是这样会MLE...

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
using namespace std;
unsigned int dp[31][31][31][31][31], n, num[6];
int main() {
    while(1) {
        cin >> n;
        if(!n) break;
        memset(num, 0, sizeof(num));
        memset(dp, 0, sizeof(dp));
        dp[0][0][0][0][0] = 1;
        for(int i = 1; i <= n; i++) cin >> num[i];
        for(int i = 0;i <= num[1]; i++) {
            for(int j = 0; j <= num[2] && j <= i; j++) {
                for(int k = 0; k <= num[3] && k <= j; k++) {
                    for(int l = 0; l <= num[4] && l <= k; l++) {
                        for(int m = 0; m <= num[5] && m <= l; m++) {
                            if(i + 1 <= num[1]) dp[i + 1][j][k][l][m] += dp[i][j][k][l][m]; 
                            if(j + 1 <= num[2] && j + 1 <= i) dp[i][j + 1][k][l][m] += dp[i][j][k][l][m];
                            if(k + 1 <= num[3] && k + 1 <= j) dp[i][j][k + 1][l][m] += dp[i][j][k][l][m];
                            if(l + 1 <= num[4] && l + 1 <= k) dp[i][j][k][l + 1][m] += dp[i][j][k][l][m];
                            if(m + 1 <= num[5] && m + 1 <= l) dp[i][j][k][l][m + 1] += dp[i][j][k][l][m];
                        }
                    }
                }
            }
        }
        cout << dp[num[1]][num[2]][num[3]][num[4]][num[5]] << endl;
    }
    return 0;
}

转载于:https://www.cnblogs.com/Mr-WolframsMgcBox/p/8578950.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值