问题:
在n个盘子中放置m个苹果,共有几种不同的放置方法;
分析:
若m小于n,放置方法与空盘子数目无关,(m,n)=(m,m);
若m大于等于n,放置方法分有空盘,无空盘两类:
有空盘
说明至少有一个空盘(m,n)=(m,n-1)
无空盘
与每个盘子减少一个苹果的情况相同(m,n)=(m-n)
#include<iostream>
#include<cmath>
#include<cstring>
using namespace std;
int NumPlace(int m, int n){
if(m == 0 || n == 1)
return 1;
if(m<n){
return NumPlace(m,m);
}else{
return NumPlace(m,n-1)+NumPlace(m-n,n);
}
}
int main()
{
int ret;
int m,n;
cout << "输入苹果,盘子个数:" << endl;
cin >> m >> n;
ret = NumPlace(m,n);
cout << "放置情况总数为:"<< ret << endl;
return 0;
}