放苹果问题(组合数学经典)

【问题描述】

把M个同样的苹果放在N个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?(用K表示)5,1,1和1,5,1 是同一种分法。

【输入】

第一行是测试数据的数目t(0 <= t <= 20)。以下每行均包含二个整数M和N,以空格分开。1<=M,N<=10。

【输出】

对输入的每组数据M和N,用一行输出相应的K。

【问题分析】

放苹果的问题乍看之下很复杂,盘子是一样的,苹果也是一样的;只要每个盘子里面放的苹果是一样多的,不管顺序如何最终得到的都是同一种分法。我属于初学算法,对于算法不熟悉,一遇到问题就会用人的思维去思考问题,我会想着空一个盘子是什么情况,空两个盘子是什么情况,一个盘子都不空又是什么情况。越想脑子越乱,最后就得不到解题方法,但是就目前看的递归算法而言。似乎是因为我想多了,其实我们需要把问题简化。就拿这个放苹果的问题而言,我们只需要分两种情况:有空盘子和没空盘子。

1.有空盘子:f(m,n)=f(m,n-1)//有空盘子很多人会有疑问,这不是只有一个空盘子的情况吗?那2个3个空盘子呢?这就需要递归的思想,随着一步一步的将n换成n-1你就会发现那就是2,3个空盘子的情况。

2.没有空盘子:f(m,n)=f(m-n,n)//没有空盘子,我们可以看成先给每一个盘子放一个苹果,则还剩下m-n个苹果,剩下的问题就是把这m-n个苹果放到n个盘子里的问题了,也许有人会问,m-n个苹果放到n个盘子也会出现空盘子的情况啊,不是和前面的有空盘子重复了?确实,会出现空盘子的情况,但是请注意,他们并不是真的空盘子,因为他们最开始已经放了一个,他们在这里的空代表着这个盘子只有最开始放的一个苹果。

因此:f(m,n)=f(m,n-1)+f(m-n,n)       m>=n                  

上面的表达式并不完整,当m<n时的情况没有考虑,当m<n的时候,肯定最少有n-m个空盘子,不过幸好,这些空盘子并不影响最后的结果,因为每种方法都带有着些空盘子,剩下的问题就是把m个苹果放到m个盘子有多少种方法了。

因此:f(m,n)=f(m,m)                m<n

写到这里主要表达式基本上已经写完了,但是递归都需要有结束条件,结束条件并不是很难发现,当只有一个盘子时明显只有一种方法,另外没有苹果和只有一个苹果的时候也只有一种放法。即f(m,n)=1      n=1,m=0

综上:

f(m,n)=1                         n=1,m=0

f(m,n)=f(m,m)                m<n

f(m,n)=f(m,n-1)+f(m-n,n)       m>=n   

【问题描述】

把M个同样的苹果放在N个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?(用K表示)5,1,1和1,5,1 是同一种分法。

【输入】

第一行是测试数据的数目t(0 <= t <= 20)。以下每行均包含二个整数M和N,以空格分开。1<=M,N<=10。

【输出】

对输入的每组数据M和N,用一行输出相应的K。

【问题分析】

放苹果的问题乍看之下很复杂,盘子是一样的,苹果也是一样的;只要每个盘子里面放的苹果是一样多的,不管顺序如何最终得到的都是同一种分法。我属于初学算法,对于算法不熟悉,一遇到问题就会用人的思维去思考问题,我会想着空一个盘子是什么情况,空两个盘子是什么情况,一个盘子都不空又是什么情况。越想脑子越乱,最后就得不到解题方法,但是就目前看的递归算法而言。似乎是因为我想多了,其实我们需要把问题简化。就拿这个放苹果的问题而言,我们只需要分两种情况:有空盘子和没空盘子。

1.有空盘子:f(m,n)=f(m,n-1)//有空盘子很多人会有疑问,这不是只有一个空盘子的情况吗?那2个3个空盘子呢?这就需要递归的思想,随着一步一步的将n换成n-1你就会发现那就是2,3个空盘子的情况。

2.没有空盘子:f(m,n)=f(m-n,n)//没有空盘子,我们可以看成先给每一个盘子放一个苹果,则还剩下m-n个苹果,剩下的问题就是把这m-n个苹果放到n个盘子里的问题了,也许有人会问,m-n个苹果放到n个盘子也会出现空盘子的情况啊,不是和前面的有空盘子重复了?确实,会出现空盘子的情况,但是请注意,他们并不是真的空盘子,因为他们最开始已经放了一个,他们在这里的空代表着这个盘子只有最开始放的一个苹果。

因此:f(m,n)=f(m,n-1)+f(m-n,n)       m>=n                  

上面的表达式并不完整,当m<n时的情况没有考虑,当m<n的时候,肯定最少有n-m个空盘子,不过幸好,这些空盘子并不影响最后的结果,因为每种方法都带有着些空盘子,剩下的问题就是把m个苹果放到m个盘子有多少种方法了。

因此:f(m,n)=f(m,m)                m<n

写到这里主要表达式基本上已经写完了,但是递归都需要有结束条件,结束条件并不是很难发现,当只有一个盘子时明显只有一种方法,另外没有苹果和只有一个苹果的时候也只有一种放法。即f(m,n)=1      n=1,m=0

综上:

f(m,n)=1                         n=1,m=0

f(m,n)=f(m,m)                m<n

f(m,n)=f(m,n-1)+f(m-n,n)       m>=n   

#include<iostream>
#include<cstring>
using namespace std;
const int maxm=10000;
int m[maxm],n[maxm],k[maxm];
int putApple(int m,int n);
int main(){
    memset(k,0,sizeof(k));
    int t;
    cin>>t;
    for(int i=1;i<=t;i++){
        cin>>m[i]>>n[i];        
    }
    for(int i=1;i<=t;i++){
    k[i]=putApple(m[i],n[i]);
    cout<<k[i]<<endl;
    }
} 
 
int putApple(int m,int n){
    if(m==0||n==1) return 1;
    if(n>m) 
        return putApple(m,m);
    else
        return putApple(m,n-1)+putApple(m-n,n);
}

 

### 信息学奥赛一本通苹果问题解题思路 #### 背景介绍 在信息学竞赛中,“苹果”是一个经典组合数学问题,其核心在于计算将一定数量的相同物品(本例中的苹果置于若干容器(盘子)内的不同方案数。这类问题通常可以通过递归来有效求解。 #### 解题策略分析 对于给定M个相同的苹果入N个不同的盘子里的方法总数而言: - 当仅有一个盘子时,无论有多少个苹果都只有唯一一种摆方式;而如果没有任何苹果,则不论多少个盘子也仅有不置任何东西这一种情形[^3]。 - 对于一般情况下的(M,N),有两种主要的情况需要考虑: - 如果允许某些盘子为空,则可以把这个问题视为把所有的苹果在前\( N−1 \)个盘子里面加上最后一个盘子可能有也可能没有苹果两种可能性之和; - 若不允许存在空盘,则相当于先向每个盘子各塞入一个苹果之后再处理剩余的苹果分配问题,即转化为求解\((M-N)\)苹果到\(N\)个非空盘子上的方案数目。 上述逻辑能够有效地减少原始问题规模直至达到基础条件为止,从而实现自顶向下逐步分解并最终汇总结果的目的[^1]。 ```python def count_ways(m, n): # Base case: If no apples or only one plate is available. if m == 0 or n == 1: return 1 # When plates are more than apples, reduce to the number of apples as limit. elif n > m: return count_ways(m, m) else: # Two scenarios: either all plates can be empty, # Or none of them should remain empty (subtracting a apple from each). without_empty_plates = count_ways(m-n, n) with_possible_empty_plates = count_ways(m, n-1) return without_empty_plates + with_possible_empty_plates # Example usage print(count_ways(7, 3)) # Output depends on specific problem constraints and inputs provided by user. ``` 此Python函数实现了基于以上讨论的递归解决方案,用于计算指定条件下苹果的不同方法的数量。注意实际应用时需根据具体题目要求调整边界条件和其他细节部分。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值