python 多线程

多线程:

参考博客:

https://blog.csdn.net/somezz/article/details/80963760

https://www.cnblogs.com/hiwuchong/p/8673183.html

Python3 线程中常用的两个模块为:

  • _thread
    提供了低级别的, 原始的线程以及一个简单的锁, 反正就是线程的手动低级控制
  • threading(推荐使用)
    包含了_thread模块的所有方法, 并对这些方法进行了封装, 提供更高级别, 功能更强, 易于使用的线程管理功能
    • threading.currentThread(): 返回当前的线程变量.
    • threading.enumerate(): 返回一个包含正在运行的线程的list. 正在运行指线程启动后、结束前, 不包括启动前和终止后的线程.
    • threading.activeCount(): 返回正在运行的线程数量, 与 len(threading.enumerate()) 有相同的结果.

thread 模块已被废弃. 用户可以使用 threading 模块代替. 所以, 在 Python3 中不能再使用"thread" 模块. 为了兼容性, Python3 将 thread 重命名为 “_thread”.

除了使用方法外, threading模块同样提供了 Thread 类来处理线程, Thread 类提供了以下方法:

  • run():
    用以表示线程活动的方法.

  • start():

    启动线程活动.

  • join([time]):
    等待至线程中止. 这阻塞调用线程直至线程的 join() 方法被调用中止-正常退出或者抛出未处理的异常-或者是可选的超时发生.

  • isAlive():
    返回线程是否活动的.

  • getName():
    返回线程名.

  • setName():
    设置线程名.

一个例子:

使用最简单的方法开了俩线程, 不断的执行print_time函数

主线程在while 中不断循环(主线程一旦终止, 其余线程也结束)

import _thread
import time

# 为线程定义一个函数
def print_time( threadName, delay):
   count = 0
   while count < 5:
      time.sleep(delay)
      count += 1
      print ("%s: %s" % ( threadName, time.ctime(time.time()) ))

# 创建两个线程
try:
   _thread.start_new_thread( print_time, ("Thread-1", 2, ) )
   _thread.start_new_thread( print_time, ("Thread-2", 4, ) )
except:
   print ("Error: 无法启动线程")

while 1:
   pass

输出:

需要手动ctrl-c退出

Thread-1: Sat Jan  9 17:16:33 2021
Thread-2: Sat Jan  9 17:16:35 2021
Thread-1: Sat Jan  9 17:16:35 2021
Thread-1: Sat Jan  9 17:16:37 2021
Thread-2: Sat Jan  9 17:16:39 2021
Thread-1: Sat Jan  9 17:16:39 2021

threading 创建进程:

基本上是利用threading.Thread类:

image-20210109183347394

可以直接将任务传递给Thread类, 以构造一个Thread实例:

import time
import threading

def task_thread(counter):
    print(f'线程名称:{threading.current_thread().name} 参数:{counter} 开始时间:{time.strftime("%Y-%m-%d %H:%M:%S")}')
    num = counter
    while num:
        time.sleep(3)
        num -= 1
    print(f'线程名称:{threading.current_thread().name} 参数:{counter} 结束时间:{time.strftime("%Y-%m-%d %H:%M:%S")}')


if __name__ == '__main__':
    print(f'主线程开始时间:{time.strftime("%Y-%m-%d %H:%M:%S")}')

    #初始化3个线程,传递不同的参数
    t1 = threading.Thread(target=task_thread, args=(3,))
    t2 = threading.Thread(target=task_thread, args=(2,))
    t3 = threading.Thread(target=task_thread, args=(1,))
    #开启三个线程
    t1.start()
    t2.start()
    t3.start()
    #等待运行结束
    t1.join()
    t2.join()
    t3.join()

    print(f'主线程结束时间:{time.strftime("%Y-%m-%d %H:%M:%S")}')

或是自建一个class继承Thread类:

#初始化3个线程,传递不同的参数
t1 = threading.Thread(target=task_thread, args=(3,))
t2 = threading.Thread(target=task_thread, args=(2,))
t3 = threading.Thread(target=task_thread, args=(1,))
class myThread (threading.Thread):
    def __init__(self, threadID, name, counter):
        threading.Thread.__init__(self)
        self.threadID = threadID
        self.name = name
        self.counter = counter
    def run(self):
        print ("开始线程:" + self.name)
        print_time(self.name, self.counter, 5)
        print ("退出线程:" + self.name)

这里用到了基类的数据成员:

image-20210110120905874

并且注意需要重载run()方法, 在线程start()后会自动调用

如果需要调用外部传入的函数, 需要在__init()__ 中添加参数并在run()中引用:

def task_thread(counter):
    print(f'线程名称:{threading.current_thread().name} 参数:{counter} 开始时间:{time.strftime("%Y-%m-%d %H:%M:%S")}')
    num = counter
    while num:
        time.sleep(3)
        num -= 1
    print(f'线程名称:{threading.current_thread().name} 参数:{counter} 结束时间:{time.strftime("%Y-%m-%d %H:%M:%S")}')


class MyThread(threading.Thread):
    def __init__(self, target, args):
        super().__init__()
        self.target = target
        self.args = args

    def run(self):
        self.target(*self.args)
  • args的作用是可变参数, 用于传递给target

    详见之前的函数章节

常用的函数也就是上头的那些:

  1. start()

    开始执行线程

    但线程的实际开始时间由python控制, 与代码执行顺序并不相同

  2. join()

    相当于线程同步, 在线程B中调用线程A的join()方法, 会使得线程B与线程A进行同步
    线程B将会在join()处等待线程A退出 (正常退出或者抛出未处理的异常-或者是可选的超时发生)

    这部分将在线程同步中详细解释

  3. isAlive():
    返回线程是否活动的.

  4. getName():
    返回线程名.

  5. setName():
    设置线程名.

  6. run():
    用以表示线程活动的方法.

    一般会在自建Thread类中重写该方法
    所以如果直接调用的话, 会在主线程中执行run()方法, 并没有实现多线程

线程同步:

join():

例子:

import time
import threading


class MyThread(threading.Thread):
    def __init__(self, counter):
        super().__init__()
        self.counter = counter

    def run(self):

        print(
            f'线程名称:{threading.current_thread().name} 参数:{self.counter} 开始时间:{time.strftime("%Y-%m-%d %H:%M:%S")}'
        )
        counter = self.counter
        while counter:
            time.sleep(3)
            counter -= 1
        print(
            f'线程名称:{threading.current_thread().name} 参数:{self.counter} 结束时间:{time.strftime("%Y-%m-%d %H:%M:%S")}'
        )


if __name__ == "__main__":
    print(f'主线程开始时间:{time.strftime("%Y-%m-%d %H:%M:%S")}')

    # 初始化3个线程,传递不同的参数
    t1 = MyThread(3)
    t2 = MyThread(2)
    t3 = MyThread(1)
    # 开启三个线程
    t1.start()
    # print("WDNMD", t1.run())
    t2.start()
    t3.start()

    # 等待运行结束
    t1.join()
    t2.join()
    t3.join()

    t1.run()

    print(f'主线程结束时间:{time.strftime("%Y-%m-%d %H:%M:%S")}')

输出:

主线程开始时间:2021-01-10 10:29:04
线程名称:Thread-1 参数:3 开始时间:2021-01-10 10:29:04
线程名称:Thread-2 参数:2 开始时间:2021-01-10 10:29:04
线程名称:Thread-3 参数:1 开始时间:2021-01-10 10:29:04
线程名称:Thread-3 参数:1 结束时间:2021-01-10 10:29:07
线程名称:Thread-2 参数:2 结束时间:2021-01-10 10:29:10
线程名称:Thread-1 参数:3 结束时间:2021-01-10 10:29:13
线程名称:MainThread 参数:3 开始时间:2021-01-10 10:29:13
线程名称:MainThread 参数:3 结束时间:2021-01-10 10:29:22
主线程结束时间:2021-01-10 10:29:22

可以看到:

  1. 执行join()后, 主线程在等待3个子线程的执行结束
  2. 直接执行t1.run() 后, 并没有开启多线程, 而是在MainThread主线程中执行run()函数

互斥锁 Lock & RLock:

  • threading.Lock()
    获得的是标准的互斥锁, 每次只能锁一次, 其余的锁请求需要等待锁释放才能获取
  • threading.RLock()
    获得的是可重入的互斥锁, 在同一个线程中可以对其进行多次锁定, 但解锁与开锁必须成对出现

使用:

lock = threading.Lock() 	# 获取一个锁对象
lock.acquire()				# 加锁
lock.release()				# 去锁

同一个锁对象只能加锁一次, 利用这个规则可以实现:

import time
import threading

num = 0
lock = threading.Lock()


def task_thread(n):
    global num
    # 获取锁,用于线程同步
    lock.acquire()
    for i in range(1000000):
        num = num + n
        num = num - n
    #释放锁,开启下一个线程
    lock.release()


if __name__ == "__main__":
    t1 = threading.Thread(target=task_thread, args=(6, ))
    t2 = threading.Thread(target=task_thread, args=(17, ))
    t3 = threading.Thread(target=task_thread, args=(11, ))
    t1.start()
    t2.start()
    t3.start()
    t1.join()
    t2.join()
    t3.join()
    print(num)

正确的输出结果为0 , 如果不加锁的话输出非0

而对于RLock:

if __name__ == "__main__":
    lock = threading.RLock()
    lock.acquire()
    print(lock)
    lock.acquire()
    print(lock)
    lock.release()
    print(lock)
    lock.release()
    print(lock)

信号量 Semaphore:

操作系统里都讲过了, 直接上代码:

import threading
import time

# 同时只有5个人办理业务
semaphore = threading.BoundedSemaphore(5)	# 获得一个限量为5的信号量
# 模拟银行业务办理
def yewubanli(name):
    semaphore.acquire()		# 与Lock相似, 也是使用acquire() & release() 进行信号量的申请&释放
    time.sleep(3)
    print(f"{time.strftime('%Y-%m-%d %H:%M:%S')} {name} 正在办理业务")
    semaphore.release()


thread_list = []
for i in range(12):
    t = threading.Thread(target=yewubanli, args=(i,))
    thread_list.append(t)

for thread in thread_list:
    thread.start()

for thread in thread_list:
    thread.join()

条件变量 Condition:

参考博客:

https://blog.csdn.net/ckk727/article/details/99950843

互斥锁Lock和RLock只能提供简单的加锁和释放锁等功能,它们的主要作用是在多线程访问共享数据时,保护共享数据,防止数据被脏读脏写,保证数据和关键代码的完整性
在此基础上,Python提供了Condition类,Condition类不仅自身依赖于Lock和RLock,即具有它们的阻塞特性,此外还提供了一些有利于线程通信,以及解决复杂线程同步问题的方法,它也被称作条件变量

就是比常规的锁多了这些高级方法

构造方法:

__init__(self,lock=None)

1)从Condition类的构造方法可以看出,Condition类总是与一个锁相关联。在创建一个Condition类的同时就应该传入Condition类需要绑定的Lock对象;

2)另外,如果不指定lock参数,那么Python会自动创建一个与之绑定的Lock对象。

acquire(timeout)

调用Condition类关联的Lock/RLock的acquire()方法。

release()

调用Condition类关联的Lock/RLock的release()方法。

wait(timeout)

1)线程挂起,直到收到一个notify通知或者等待时间超出timeout才会被唤醒;

2)注意:wait()必须在已获得Lock的前提下调用,否则会引起RuntimeError错误。

notify(n=1)

1)唤醒在Condition的waiting池中的n(参数n可设置,默认为1)个正在等待的线程并通知它,受到通知的线程将自动调用acquire()方法尝试加锁;

2)如果waiting池中有多个线程,随机选择n个唤醒;

3)必须在已获得Lock的前提下调用,否则将引发错误。

notify_all()

唤醒waiting池中的等待的所有线程并通知它们。

生产者 & 消费者 问题:

import threading
from time import sleep

#商品
product = 500
#条件变量
con = threading.Condition(threading.Lock())


#生产者类
#继承Thread类
class Producer(threading.Thread):
    def __init__(self, name):
        super().__init__()
        self.name = name

    def run(self):
        global product
        while True:
            #如果获得了锁
            if con.acquire():
                #处理产品大于等于500和小于500的情况
                if product >= 500:
                    #如果大于等于500,Producer不需要额外操作,于是挂起
                    con.wait()
                else:
                    product += 50
                    message = self.name + " produced 50 products."
                    print(message)
                    #处理完成,发出通知告诉Consumer
                    con.notify()
                #释放锁
                con.release()
                sleep(1)


#消费者类
#继承Thread类
class Consumer(threading.Thread):
    def __init__(self, name):
        super().__init__()
        self.name = name

    def run(self):
        global product
        while True:
            #如果获得了锁
            if con.acquire():
                #处理product小于等于100和大于100的两种情况
                if product <= 100:
                    #如果小于等于100,Consumer不需要额外操作,于是挂起
                    con.wait()
                else:
                    product -= 10
                    message = self.name + " consumed 10 products."
                    print(message)
                    #处理完成,发出通知告诉Producer
                    con.notify()
                #释放锁
                con.release()
                sleep(1)


def main():
    #创建两个Producer
    for i in range(2):
        p = Producer('Producer-%d' % i)
        p.start()
    #创建三个Consumer
    for i in range(3):
        c = Consumer('Consumer-%d' % i)
        c.start()


if __name__ == '__main__':
    main()

Event:

参考博客:

https://www.cnblogs.com/zhangshengxiang/p/9606133.html

同进程的一样,线程的一个关键特性是每个线程都是独立运行且状态不可预测。如果程序中的其 他线程需要通过判断某个线程的状态来确定自己下一步的操作,这时线程同步问题就会变得非常棘手。为了解决这些问题,我们需要使用threading库中的Event对象。 对象包含一个可由线程设置的信号标志,它允许线程等待某些事件的发生。在 初始情况下,Event对象中的信号标志被设置为假。如果有线程等待一个Event对象, 而这个Event对象的标志为假,那么这个线程将会被一直阻塞直至该标志为真。一个线程如果将一个Event对象的信号标志设置为真,它将唤醒所有等待这个Event对象的线程。如果一个线程等待一个已经被设置为真的Event对象,那么它将忽略这个事件, 继续执行

总结:

Event的功能上更加简单, 有点像是Condition的缩水版, 相当于一个所有线程都可以访问的Flag, 创建时默认为False, 此时调用event.wait() 的线程会进入等待状态, 如果有一个线程将Event设置为True, 则所有等待Event的线程都会被唤醒

Event几种方法:

  • event.isSet():返回event的状态值;

  • event.wait():如果 event.isSet()==False将阻塞线程;

  • event.set(): 设置event的状态值为True,所有阻塞池的线程激活进入就绪状态, 等待操作系统调度;

  • event.clear():恢复event的状态值为False。

线程优先级队列:

参考博客:

https://blog.csdn.net/alian_w/article/details/104426974

这个是利用Python 内置的Queue模块实现的:

 q = Queue(maxsize=)
 q = Queue()
 # maxsize=:表示队列大小最大值,当队列到达最大值时再插入则线程会挂起
 # 可不填,不填则理论无上限

利用这个特性可以很轻松的实现 生产者 & 消费者 模型

import threading,time

import queue


#先进先出
q = queue.Queue(maxsize=5)

def ProducerA():
    count = 1
    while True:
        q.put(f"冷饮 {count}")
        print(f"A 放入:[冷饮 {count}]")
        count +=1
        time.sleep(1)

def  ConsumerB():
    while True:
        print(f"B 取出 [{q.get()}]")
        time.sleep(5)

p = threading.Thread(target=ProducerA)
c = threading.Thread(target=ConsumerB)
c.start()
p.start()

输出:

16:29:19 A 放入:[冷饮 1]
16:29:19 B 取出 [冷饮 1]
16:29:20 A 放入:[冷饮 2]
16:29:21 A 放入:[冷饮 3]
16:29:22 A 放入:[冷饮 4]
16:29:23 A 放入:[冷饮 5]
16:29:24 B 取出 [冷饮 2]
16:29:24 A 放入:[冷饮 6]
16:29:25 A 放入:[冷饮 7]
16:29:29 B 取出 [冷饮 3]
16:29:29 A 放入:[冷饮 8]
16:29:34 B 取出 [冷饮 4]
16:29:34 A 放入:[冷饮 9]

进程池 & 线程池:

这部分算高级应用了, 有需要在看

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值