CUDA版本与显卡驱动对照表

最新数据直接参考官网:

https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html#title-resolved-issues

CUDA版本必须与所支持的驱动相对应

Component NameVersion InformationSupported Architectures
CUDA Runtime (cudart)11.2.146x86_64, POWER, Arm64
cuobjdump11.2.135x86_64, POWER, Arm64
CUPTI11.2.135x86_64, POWER, Arm64
CUDA cuxxfilt (demangler)11.2.135x86_64, POWER, Arm64
CUDA Demo Suite11.2.67x86_64
CUDA GDB11.2.135x86_64, POWER, Arm64
CUDA Memcheck11.2.135x86_64, POWER
CUDA NVCC11.2.142x86_64, POWER, Arm64
CUDA nvdisasm11.2.135x86_64, POWER, Arm64
CUDA NVML Headers11.2.67x86_64, POWER, Arm64
CUDA nvprof11.2.135x86_64, POWER, Arm64
CUDA nvprune11.2.135x86_64, POWER, Arm64
CUDA NVRTC11.2.142x86_64, POWER, Arm64
CUDA NVTX11.2.67x86_64, POWER, Arm64
CUDA NVVP11.2.135x86_64, POWER
CUDA Samples11.2.135x86_64, POWER, Arm64
CUDA Compute Sanitizer API11.2.135x86_64, POWER, Arm64
CUDA cuBLAS11.4.1.1026x86_64, POWER, Arm64
CUDA cuFFT10.4.0.135x86_64, POWER, Arm64
CUDA cuRAND10.2.3.135x86_64, POWER, Arm64
CUDA cuSOLVER11.1.0.135x86_64, POWER, Arm64
CUDA cuSPARSE11.4.0.135x86_64, POWER, Arm64
CUDA NPP11.3.2.139x86_64, POWER, Arm64
CUDA nvJPEG11.4.0.135x86_64, POWER, Arm64
Nsight Compute2020.3.1.3x86_64, POWER, Arm64
Nsight Windows NVTX1.21018621x86_64, POWER, Arm64
Nsight Systems2020.4.3.7x86_64, POWER, Arm64
Nsight Visual Studio Edition (VSE)2020.3.1.21012x86_64 (Windows)
NVIDIA Linux Driver460.32.03x86_64, POWER, Arm64
NVIDIA Windows Driver461.09x86_64 (Windows)
CUDA ToolkitLinux x86_64 Driver VersionWindows x86_64 Driver Version
CUDA 11.2.1 Update 1>=460.32.03>=461.09
CUDA 11.2.0 GA>=460.27.03>=460.82
CUDA 11.1.1 Update 1>=455.32>=456.81
CUDA 11.1 GA>=455.23>=456.38
CUDA 11.0.3 Update 1>= 450.51.06>= 451.82
CUDA 11.0.2 GA>= 450.51.05>= 451.48
CUDA 11.0.1 RC>= 450.36.06>= 451.22
CUDA 10.2.89>= 440.33>= 441.22
CUDA 10.1 (10.1.105 general release, and updates)>= 418.39>= 418.96
CUDA 10.0.130>= 410.48>= 411.31
CUDA 9.2 (9.2.148 Update 1)>= 396.37>= 398.26
CUDA 9.2 (9.2.88)>= 396.26>= 397.44
CUDA 9.1 (9.1.85)>= 390.46>= 391.29
CUDA 9.0 (9.0.76)>= 384.81>= 385.54
CUDA 8.0 (8.0.61 GA2)>= 375.26>= 376.51
CUDA 8.0 (8.0.44)>= 367.48>= 369.30
CUDA 7.5 (7.5.16)>= 352.31>= 353.66
CUDA 7.0 (7.0.28)>= 346.46>= 347.62
### 如何确保安装的CUDA版本电脑硬件和驱动程序兼容 为了确保安装的CUDA版本计算机硬件和驱动程序兼容,需遵循几个重要步骤: 对于Windows系统上的NVIDIA GPU型号、CUDA版本以及驱动程序版本的确认方法如下[^3]。可以通过`nvidia-smi`命令来查看当前系统的GPU信息及其所支持的CUDA版本。如果遇到`nvidia-smi不是内部或外部命令...`的情况,则可能是由于环境变量配置不当造成的。 要验证CUDA工具包和对应的驱动版本是否匹配,可以参照官方文档中的表格(Table 3),该表列出了不同版本CUDA Toolkit所需的最低驱动版本。这有助于判断已有的驱动版本能否满足现有CUDA工具包的需求。 当尝试编译并运行CUDA程序时发现无法设置CUDA设备,通常是因为缺少必要的NVIDIA驱动程序[^1]。即使CUDA工具包已经成功安装,在没有适当驱动的情况下也可能导致此类问题的发生。因此建议先检查是否有合适的显卡驱动被正确安装,并且其版本应该能够支持所使用的CUDA版本。 另外需要注意的是,在安装任何新的软件之前,应当仔细核对CUDA、PyTorch以及其他依赖项之间是否存在版本冲突,因为这些组件间存在严格的版本对应关系[^2]。只有当所有部分都处于互相兼容的状态下,整个开发环境才能够稳定工作。 #### 检查过程总结 - 使用`nvidia-smi`命令获取当前系统的信息; - 对照官方提供的CUDA Toolkit and Corresponding Driver Versions表格,找到适合自己的组合; - 如果有必要的话更新至最新版或者指定版本的驱动程序; - 安装前再次核查各个组成部分间的版本一致性; ```bash # 执行此命令以显示有关您的NVIDIA GPU的信息 nvidia-smi ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值