#Python3入门机器学习之3.线性回归法
_凡一
这个作者很懒,什么都没留下…
展开
-
Python3入门机器学习之3.9使用scikit-learn解决回归问题
Python3入门机器学习3.9 使用scikit-learn解决回归问题1.准备数据集:2.scikit-learn中的线性回归:原创 2020-06-28 09:49:56 · 546 阅读 · 0 评论 -
Python3入门机器学习之3.8实现多元线性回归
Python3入门机器学习3.8 实现多元线性回归1.实现对多元线性回归LinearRegression的封装:class LinearRegression: def __init__(self): """初始化Linear Regression模型""" self.coef_ = None #系数 self.interception_ = None #截距 self._theta = None #整体 是一个私有变量原创 2020-06-24 21:11:27 · 352 阅读 · 0 评论 -
Python3入门机器学习之3.7多元线性回归和正规方程解
Python3入门机器学习3.7 多元线性回归和正规方程解多元线性回归有多个特征值。原创 2020-06-24 10:04:06 · 377 阅读 · 0 评论 -
Python3入门机器学习之3.6最好的衡量线性回归法的指标:R Squared
Python3入门机器学习3.6 最好的衡量线性回归法的指标:R Squared1.R Squared:关于R^2的结论:R^2 <= 1;R^2越大越好。当我们的预测模型不犯任何错误时,R^2得到最大值1(分子为0)。当我们的模型等于基准模型时,R^2为0。如果R^2 < 0,说明我们学习到的模型还不如基准模型。此时,很有可能我们的数据不存在任何线性关系。2.R Squared的具体实现:尝试着自己封装:def r2_score(y_true, y_predi原创 2020-06-23 20:23:00 · 1164 阅读 · 0 评论 -
Python3入门机器学习之3.5衡量线性回归法的指标:MSE,RMSE和MAE
Python3入门机器学习3.5 衡量线性回归法的指标:MSE,RMSE和MAE1.线性回归算法的评测:(1).均方误差MSE(Mean Square Error):(2).均方根误差RMSE(Root Mean Squared Error):均方根误差RMSE很好的解决了量纲的问题。(3).平均绝对误差MAE(Mean Absolute Error):2.以上三个指标的过程:(1).首先准备数据,这里我们用sklearn为我们提供的波士顿的房产的数据:可以观察到这个数据集有13个原创 2020-06-23 17:18:29 · 2267 阅读 · 0 评论 -
Python3入门机器学习之3.4向量化
Python3入门机器学习3.4 向量化1.向量化运算:在上一节中,求解参数a时,使用的for循环依次求解出分子和分母的m项都是什么,然后将它们相加在一起。而使用for循环这种方式性能相对来讲是比较低的,如果有办法将这个计算变为向量计算,那么性能就会大大的提升,这就是向量化运算的意义。在a的式子里,仔细观察分子和分母都属于以下这样一种模式:而w是一个向量,v也是一个向量。有了这样两个向量,将它们进行点乘,就是两个向量对应的项相乘再相加。这样一来就可以使用numpy中向量的运算法则,非常快速高效原创 2020-06-23 10:42:09 · 292 阅读 · 0 评论 -
Python3入门机器学习之3.3简单线性回归的实现
Python3入门机器学习3.3 简单线性回归的实现1.实现 Simple Linear Regression:2.根据以上的过程,试着封装SimpleLinearRegression:import numpy as npclass SimpleLinearRegression1: def __init__(self): '''初始化Simple Linear Regression 模型''' self.a_ = None sel原创 2020-06-23 09:38:15 · 289 阅读 · 1 评论 -
Python3入门机器学习之3.2最小二乘法
Python3入门机器学习3.2 最小二乘法以下为参数a和b的推导过程:典型的求极值(极小值)问题,分别对a和b求偏导,令其得0。原创 2020-06-22 10:51:35 · 138 阅读 · 0 评论 -
Python3入门机器学习之3.1简单线性回归
Python3入门机器学习3.1 简单线性回归1.线性回归算法的优点:解决回归问题思想简单,实现容易许多强大的非线性模型的基础结果具有很好的可解释性蕴含机器学习中的很多重要思想2.什么是线性回归算法?寻找一条直线,最大程度的“拟合”样本特征和样本输出标记之间的关系。其中,房屋面积为样本特征,价格为输出标记。样本特征只有一个,称为:简单线性回归。以上就是简单线性回归。样本特征有多个称为多元线性回归。3.一类机器学习算法的基本思路:以上的过程就是一类机器学习算法的基本思原创 2020-06-22 10:14:17 · 238 阅读 · 0 评论