#Python3入门机器学习之7.逻辑回归
_凡一
这个作者很懒,什么都没留下…
展开
-
Python3入门机器学习之7.6OvR与OvO
Python3入门机器学习7.6 OvR与OvO转载 2020-07-09 14:03:58 · 644 阅读 · 0 评论 -
Python3入门机器学习之7.5在逻辑回归中使用多项式特征
Python3入门机器学习7.5 在逻辑回归中使用多项式特征我们也可以在逻辑回归中添加多项式项,使得可以生成不规则的决策边界,进而对非线性的数据进行很好的分类,如下:既然我们引入多项式项,我们的模型就会变得很复杂,可能产生过拟合的情况。为了解决过拟合,常规的手段就是为我们的模型添加正则化:...原创 2020-07-09 10:26:26 · 332 阅读 · 0 评论 -
Python3入门机器学习之7.4决策边界
Python3入门机器学习7.4 决策边界1.逻辑回归中中的决策边界:以鸢尾花数据集为例,决策边界的几何意义:2.不规则的决策边界的绘制方法:def plot_decision_boundary(model, axis): x0, x1 = np.meshgrid( np.linspace(axis[0], axis[1], int((axis[1]-axis[0])*100)).reshape(-1, 1), np.linspace(ax原创 2020-07-09 08:35:26 · 349 阅读 · 0 评论 -
Python3入门机器学习之7.3逻辑回归损失函数的梯度
Python3入门机器学习7.3 逻辑回归损失函数的梯度前半部分的导数为:后半部分的导数为:于是:回忆线性回归:原创 2020-07-08 16:04:27 · 180 阅读 · 0 评论 -
Python3入门机器学习之7.1什么是逻辑回归
Python3入门机器学习7.1 什么是逻辑回归逻辑回归:解决分类问题。回归问题怎么解决分类问题呢?将样本的特征和样本发生的概率联系起来,概率是一个数。原创 2020-07-08 12:25:31 · 124 阅读 · 0 评论 -
Python3入门机器学习之7.2逻辑回归的损失函数
Python3入门机器学习7.2 逻辑回归的损失函数原创 2020-07-08 12:47:43 · 489 阅读 · 0 评论