AI之深度学习

简介

深度学习(Deep learning)是机器学习的一个分支,核心思想是通过多层次的特征提取,自动学习数据的复杂模式和潜在规律。它利用多层次的神经网络结构来学习数据的表示和抽象。相比传统的浅层机器学习模型,深度学习模型具有多个隐藏层,能够自动学习数据的复杂模式和潜在规律。

深度学习的产生,主要有以下几个背景原因:

硬件条件的成熟

  • 近年来,计算机硬件特别是GPU的性能大幅提升,为深度学习模型的训练提供了强大的计算能力支持。
  • 同时存储设备的容量也不断扩大,为模型训练提供了海量的数据支持。

数据量的急剧增加

  • 随着互联网和移动设备的广泛应用,各类数字数据呈爆炸式增长。
  • 这为深度学习模型的训练提供了大量可用的训练数据,是深度学习发展的重要基础。

算法理论的突破

  • 深度学习的核心算法,如反向传播算法、regularization技术等,在过去几十年里不断完善和优化。
  • 这些算法理论上的突破,为深度学习模型的训练和应用奠定了坚实的基础。

应用需求的驱动

  • 随着人工智能在各行各业的广泛应用,对于复杂的感知、决策等能力产生了迫切需求。
  • 深度学习凭借其强大的建模能力,能够很好地满足这些应用需求,从而推动了深度学习技术的快速发展。

为什么叫深度学习

深度学习之所以被称为"深度学习",主要有以下几个原因:

多层神经网络结构

  • 传统的机器学习模型通常都是浅层的,只有一两个隐藏层。
  • 而深度学习模型通常包含多个隐藏层,可以达到10层甚至100层以上。
  • 这种多层的神经网络结构,可以更好地学习数据的复杂模式和抽象特征。

层次化的特征表示

  • 浅层模型只能学习到数据的低层次特征,如边缘、纹理等。
    而深度学习模型可以逐层学习到从低级到高级的特征抽象,形成一种层次化* 的特征表示。
  • 这种层次化的特征表示更适合建模复杂的数据,如自然语言、图像等。

端到端的学习能力

  • 传统机器学习需要人工设计特征提取算法,再使用机器学习模型进行分类。
  • 而深度学习可以直接从原始数据出发,通过端到端的学习自动提取特征并进行分类。
  • 这种端到端的学习能力使深度学习模型更加强大和灵活。

强大的数据拟合能力

  • 多层结构使深度学习模型具有很强的数据拟合能力,可以学习到复杂的数据分布。
  • 这种强大的数据拟合能力,使深度学习在很多领域都能取得突破性的性能提升。

适用数据类型

深度学习适用于处理各种非结构化的数据类型,主要包括以下几种:

图像数据

  • 深度学习在图像分类、目标检测、图像分割等视觉任务上表现非常出色。
  • 常用的深度学习模型包括卷积神经网络(CNN)、生成对抗网络(GAN)等。

文本数据

  • 深度学习在自然语言处理领域,如文本分类、机器翻译、问答系统等方面有广泛应用。
  • 常用的深度学习模型包括循环神经网络(RNN)、长短期记忆网络(LSTM)、Transformer等。

语音数据

  • 深度学习在语音识别、语音合成、语音翻译等语音处理任务上取得了突破性进展。
  • 常用的深度学习模型包括时间卷积网络(TCN)、transformer等。

时间序列数据

  • 深度学习在金融、制造、气象等领域的时间序列预测任务上表现出色。
  • 常用的深度学习模型包括LSTM、GRU、TCN等。

多模态数据

  • 深度学习能够有效处理图像、文本、语音等多种模态的融合数据。
  • 常用的深度学习模型包括多模态transformer、多任务学习等

数据流

一般来说,深度学习的数据处理流程包括以下几个主要步骤:

数据收集和预处理

  • 收集相关的训练数据,包括图像、文本、音频等非结构化数据。
  • 对原始数据进行清洗、标注、格式转换等预处理,确保数据质量。
  • 根据具体任务需要,进行数据扩增、归一化等操作优化数据形式。

特征工程

  • 针对非结构化的原始数据,设计有效的特征提取方法。
  • 常见的特征工程技术包括词嵌入、图像增强、时频分析等。
  • 经过特征工程,原始数据被转换为更加适合深度学习模型输入的形式。

模型构建和训练

  • 选择合适的深度学习模型架构,如卷积神经网络、循环神经网络、transformer等。
  • 根据具体任务调整模型的超参数,如网络层数、学习率、正则化方法等。
  • 利用预处理后的数据对模型进行大规模的训练,直到达到满意的性能指标。

模型验证和调优

  • 使用单独的验证集对训练好的模型进行评估,检查是否存在过拟合或欠拟合问题。
  • 根据验证结果,适当调整模型结构、超参数或数据预处理方法,进行再次迭代训练。
  • 确保模型在测试集上也能保持良好的泛化性能。

部署和应用

  • 将训练好的模型部署到实际应用场景中,如嵌入式设备、移动 APP 等。
  • 持续监测模型在生产环境中的表现,并根据反馈进行必要的微调或重新训练。

常见的深度学习模型:

卷积神经网络(Convolutional Neural Network, CNN)

  • 主要用于处理图像、视频等二维或三维结构化数据。
  • 通过卷积和池化操作,可以有效提取图像的局部特征,适用于图像分类、目 标检测等任务。
  • CNN 的主要组件包括卷积层、池化层和全连接层,通过这些层次性的结构可以完成图像分类、目标检测等任务。
  • 经典的 CNN 模型包括 LeNet、AlexNet、VGGNet、ResNet 等。

import torch.nn as nn
import torch.nn.functional as F

class CNN(nn.Module):
    def __init__(self):
        super(CNN, self).__init__()
        self.conv1 = nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5)
        self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)
        self.conv2 = nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5)
        self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
        self.fc1 = nn.Linear(in_features=16 * 5 * 5, out_features=120)
        self.fc2 = nn.Linear(in_features=120, out_features=84)
        self.fc3 = nn.Linear(in_features=84, out_features=10)

    def forward(self, x):
        x = self.pool1(F.relu(self.conv1(x)))
        x = self.pool2(F.relu(self.conv2(x)))
        x = x.view(-1, 16 * 5 * 5)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

循环神经网络(Recurrent Neural Network, RNN)

  • RNN 是一种用于处理序列数据的深度学习模型,如自然语言、语音、时间序列等。
  • 通过隐藏状态的循环连接,可以学习序列数据的时序特征和依赖关系。
  • 常见的 RNN 模型包括 Simple RNN、LSTM 和 GRU,它们在处理长期依赖问题上有不同的改进。
import torch.nn as nn

class RNN(nn.Module):
    def __init__(self, input_size, hidden_size, num_layers, output_size):
        super(RNN, self).__init__()
        self.hidden_size = hidden_size
        self.num_layers = num_layers
        self.rnn = nn.RNN(input_size, hidden_size, num_layers, batch_first=True)
        self.fc = nn.Linear(hidden_size, output_size)

    def forward(self, x):
        # 初始化隐藏状态
        h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size)
        
        # 通过 RNN 层
        out, _ = self.rnn(x, h0)
        
        # 通过全连接层
        out = self.fc(out[:, -1, :])
        return out

生成对抗网络(Generative Adversarial Network, GAN)

*GAN 是一种用于生成新数据样本的深度学习模型,如图像、文本、语音等。

  • 通过生成器和判别器两个网络的对抗训练,可以生成逼真的数据。
  • 生成器负责生成新的数据样本,判别器负责判断样本是真实还是生成的。两个网络相互对抗,最终学习到生成器可以生成难以区分的数据。
  • 经典的 GAN 模型包括 DCGAN、Conditional GAN、StyleGAN 等。
import torch.nn as nn
import torch.optim as optim
import torch.utils.data

class Generator(nn.Module):
    def __init__(self, latent_dim, output_dim):
        super(Generator, self).__init__()
        self.main = nn.Sequential(
            nn.Linear(latent_dim, 256),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Linear(256, 512),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Linear(512, output_dim),
            nn.Tanh()
        )

    def forward(self, z):
        return self.main(z)

class Discriminator(nn.Module):
    def __init__(self, input_dim):
        super(Discriminator, self).__init__()
        self.main = nn.Sequential(
            nn.Linear(input_dim, 512),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Linear(512, 256),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Linear(256, 1),
            nn.Sigmoid()
        )

    def forward(self, x):
        return self.main(x)

Transformer

  • Transformer 模型是一种基于注意力机制的序列到序列的深度学习模型,广泛应用于自然语言处理等领域。
  • 基于注意力机制的全连接结构,可以很好地建模序列数据的长距离依赖关系。
  • 广泛应用于 BERT、GPT 等自然语言处理模型中。

主要包括以下几个关键组件:

  • Attention 机制: 计算输入序列和输出序列之间的关联性,并根据关联性来动态调整输出。
  • 多头注意力(Multi-Head Attention): 将注意力机制扩展到多个注意力子层,提高模型的表达能力。
  • 前馈网络(Feed-Forward Network): 对编码器和解码器的输出进行进一步的非线性变换。
  • 层归一化(Layer Normalization): 在每个子层之后应用,帮助模型收敛更快。
  • 位置编码(Positional Encoding): 为输入序列的每个位置添加一个位置编码,以捕捉序列的顺序信息。
import torch
import torch.nn as nn
import math

class MultiHeadAttention(nn.Module):
    def __init__(self, d_model, num_heads):
        super().__init__()
        self.d_model = d_model
        self.num_heads = num_heads
        self.d_k = d_model // num_heads

        self.linear_q = nn.Linear(d_model, d_model)
        self.linear_k = nn.Linear(d_model, d_model)
        self.linear_v = nn.Linear(d_model, d_model)
        self.linear_out = nn.Linear(d_model, d_model)

    def forward(self, q, k, v, mask=None):
        batch_size = q.size(0)

        q = self.linear_q(q).view(batch_size, -1, self.num_heads, self.d_k)
        k = self.linear_k(k).view(batch_size, -1, self.num_heads, self.d_k)
        v = self.linear_v(v).view(batch_size, -1, self.num_heads, self.d_k)

        q = q.transpose(1, 2)
        k = k.transpose(1, 2)
        v = v.transpose(1, 2)

        scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k)
        if mask is not None:
            scores = scores.masked_fill(mask == 0, -1e9)
        attn = nn.Softmax(dim=-1)(scores)
        context = torch.matmul(attn, v)

        context = context.transpose(1, 2).contiguous().view(batch_size, -1, self.d_model)
        output = self.linear_out(context)
        return output

class FeedForward(nn.Module):
    def __init__(self, d_model, d_ff, dropout=0.1):
        super().__init__()
        self.linear1 = nn.Linear(d_model, d_ff)
        self.dropout = nn.Dropout(dropout)
        self.linear2 = nn.Linear(d_ff, d_model)

    def forward(self, x):
        x = self.linear1(x)
        x = nn.functional.relu(x)
        x = self.dropout(x)
        x = self.linear2(x)
        return x

class EncoderLayer(nn.Module):
    def __init__(self, d_model, num_heads, d_ff, dropout=0.1):
        super().__init__()
        self.self_attn = MultiHeadAttention(d_model, num_heads)
        self.feed_forward = FeedForward(d_model, d_ff, dropout)
        self.norm1 = nn.LayerNorm(d_model)
        self.norm2 = nn.LayerNorm(d_model)
        self.dropout1 = nn.Dropout(dropout)
        self.dropout2 = nn.Dropout(dropout)

    def forward(self, x, mask):
        attn_output = self.self_attn(x, x, x, mask)
        x = x + self.dropout1(attn_output)
        x = self.norm1(x)
        ff_output = self.feed_forward(x)
        x = x + self.dropout2(ff_output)
        x = self.norm2(x)
        return x

class Transformer(nn.Module):
    def __init__(self, src_vocab_size, tgt_vocab_size, d_model, num_heads, num_layers, d_ff, dropout=0.1):
        super().__init__()
        self.src_embed = nn.Embedding(src_vocab_size, d_model)
        self.tgt_embed = nn.Embedding(tgt_vocab_size, d_model)
        self.pos_encode = PositionalEncoding(d_model, dropout)
        self.encoder = nn.ModuleList([EncoderLayer(d_model, num_heads, d_ff, dropout) for _ in range(num_layers)])
        self.linear = nn.Linear(d_model, tgt_vocab_size)

    def forward(self, src, tgt, src_mask, tgt_mask):
        src = self.src_embed(src)
        tgt = self.tgt_embed(tgt)
        src = self.pos_encode(src)
        tgt = self.pos_encode(tgt)

        for layer in self.encoder:
            src = layer(src, src_mask)

        output = self.linear(src)
        return output

这个代码实现了一个基本的 Transformer 模型,包括多头注意力机制、前馈网络、层归一化和位置编码等关键组件。实际应用中,你可能还需要根据具体任务进行一些修改和优化。

神经网络架构搜索(Neural Architecture Search, NAS)

  • 神经网络架构搜索(Neural Architecture Search, NAS)是一个复杂的机器学习任务,通过自动化的方式探索和优化神经网络模型结构,以获得更优秀的性能
  • 通过强化学习或进化算法等方法,可以找到针对特定任务最佳的模型架构。
  • 经典的 NAS 算法包括 ENAS、DARTS、EfficientNet 等。

下面是一个基于 DARTS(Differentiable Architecture Search) 算法的 NAS 代码实例:

import torch
import torch.nn as nn
import torch.nn.functional as F

from collections import namedtuple

Genotype = namedtuple('Genotype', 'normal normal_concat reduce reduce_concat')

def _criterion(logits, target):
    return F.cross_entropy(logits, target)

class MixedOp(nn.Module):
    def __init__(self, C, stride):
        super(MixedOp, self).__init__()
        self.op1 = nn.Conv2d(C, C, 3, stride, 1, bias=False)
        self.bn1 = nn.BatchNorm2d(C)
        self.op2 = nn.Conv2d(C, C, 5, stride, 2, bias=False)
        self.bn2 = nn.BatchNorm2d(C)
        self.op3 = nn.MaxPool2d(3, stride, 1)
        self.op4 = nn.AvgPool2d(3, stride, 1)
        self.op5 = nn.Identity()

    def forward(self, x, weights):
        return sum(w * op(x) for w, op in zip(weights, [self.op1, self.op2, self.op3, self.op4, self.op5]))

class Cell(nn.Module):
    def __init__(self, genotype, C_prev_prev, C_prev, C, reduction, reduction_prev):
        super(Cell, self).__init__()
        if reduction_prev:
            self.preprocess0 = FactorizedReduce(C_prev_prev, C)
        else:
            self.preprocess0 = ReLUConvBN(C_prev_prev, C, 1, 1, 0)
        self.preprocess1 = ReLUConvBN(C_prev, C, 1, 1, 0)

        if reduction:
            op_names, indices = zip(*genotype.reduce)
            concat = genotype.reduce_concat
        else:
            op_names, indices = zip(*genotype.normal)
            concat = genotype.normal_concat

        self._compile(C, op_names, indices, concat, reduction)

    def _compile(self, C, op_names, indices, concat, reduction):
        self._steps = len(op_names) // 2
        self._concat = concat
        self.multiplier = len(concat)

        self._ops = nn.ModuleList()
        for name, index in zip(op_names, indices):
            stride = 2 if reduction and index < 2 else 1
            op = MixedOp(C, stride)
            self._ops += [op]

    def forward(self, s0, s1, weights):
        s0 = self.preprocess0(s0)
        s1 = self.preprocess1(s1)

        states = [s0, s1]
        for i in range(self._steps):
            h1 = states[indices[2*i]]
            h2 = states[indices[2*i+1]]
            op1 = self._ops[2*i]
            op2 = self._ops[2*i+1]
            h1 = op1(h1, weights[2*i])
            h2 = op2(h2, weights[2*i+1])
            s = h1 + h2
            states += [s]

        return torch.cat([states[i] for i in self._concat], dim=1)

class Network(nn.Module):
    def __init__(self, C, num_classes, layers, criterion, genotype):
        super(Network, self).__init__()
        self._layers = layers
        self.stem = nn.Sequential(
            nn.Conv2d(3, C, 3, padding=1, bias=False),
            nn.BatchNorm2d(C)
        )

        C_prev_prev, C_prev, C_curr = C, C, C
        self.cells = nn.ModuleList()
        reduction_prev = False
        for i in range(layers):
            if i in [layers//3, 2*layers//3]:
                C_curr *= 2
                reduction = True
            else:
                reduction = False
            cell = Cell(genotype, C_prev_prev, C_prev, C_curr, reduction, reduction_prev)
            reduction_prev = reduction
            self.cells += [cell]
            C_prev_prev, C_prev = C_prev, cell.multiplier*C_curr

        self.global_pooling = nn.AdaptiveAvgPool2d(1)
        self.classifier = nn.Linear(C_prev, num_classes)
        self.criterion = criterion

    def forward(self, input, architect_weights):
        s0 = s1 = self.stem(input)
        for i, cell in enumerate(self.cells):
            s0, s1 = s1, cell(s0, s1, architect_weights[i])
        out = self.global_pooling(s1)
        out = self.classifier(out.view(out.size(0), -1))
        return out

class Architecture(nn.Module):
    def __init__(self, C, num_classes, layers, criterion):
        super(Architecture, self).__init__()
        self._C = C
        self._num_classes = num_classes
        self._layers = layers
        self._criterion = criterion
        self.network = Network(C, num_classes, layers, criterion, None)
        self.architect_weights = nn.Parameter(torch.Tensor(sum(2 * i + 1 for i in range(self._layers)), 5))
        self.reset_parameters()

    def reset_parameters(self):
        nn.init.kaiming_uniform_(self.architect_weights, a=math.sqrt(5))

    def forward(self, input, target):
        architect_weights = F.softmax(self.architect_weights, dim=-1)
        logits = self.network(input, architect_weights)
        return self._criterion(logits, target)

这个代码实现了一个基于 DARTS 算法的神经网络架构搜索模型。主要包含以下几个关键组件:

MixedOp: 定义了五种基本的卷积和池化操作,并使用权重来动态组合它们。
Cell: 定义了一个搜索单元,包括预处理层和多个 MixedOp 层。
Network: 定义了整个网络架构,由多个 Cell 组成。
Architecture: 定义了整个 NAS 模型,包括网络结构和架构参数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Cherry Xie

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值