正解:
解题报告:
首先不难想到这题主要有两个问题需要解决,一个是预处理出各个点的箱子半径最大值,一个是求ans
然后分别港下QwQ
首先关于预处理要说下昂
预处理有三种方法,分别港下
第一种是从障碍点出发,八联通bfs
就bfs,最开始是所有障碍点加入队列中,然后八联通bfs地转移,每个点第一次被找到的时候就是它能放的最大箱子的半径
第二种是二维前缀和
这个我还马油get等看了代码再来repo趴QAQ
第三种是二分
同上QAQ
然后关于具体求解,有两个正解和一个听说是假的但是听说跑得挺快的代码
第一种是最大生成树
第二种是kruscal重构树
第三种是整体二分(这个听说复杂度是假的,,,?但是好像跑得过去而且还挺快的hhhh
然后我可能会放整体二分&最大生成树的代码趴,,,kruscal重构树过几天学昂QwQ
然后,因为我考场上打的是整体二分所以我先做的整体二分嘛
然后蜜汁WA了一个点,,,
然后我改了2h之后,发现,我可能是个sd,,,
说下我哪儿错了QAQ
我不是连边嘛,我就直接把每个点往左边和上边连嘛
然后考虑到二维不好存不好表示,我就给改成了(i-1)*n+j
然后这时候有个问题昂!如果有个点!它在最左侧,那它就不能向左边连边了嘛!
然后我忘记判了直接连边于是90pts滚粗嘤嘤嘤,,,
#include<bits/stdc++.h> using namespace std; #define il inline #define rg register #define gc getchar() #define rp(i,x,y) for(rg int i=x;i<=y;++i) #define my(i,x,y) for(rg int i=x;i>=y;--i) const int N=1100,M=300000+10; int n,q,as[M],ed_cnt,fa[N*N],dis[N*N]; bool vis[N*N]; struct ed{int fr,to,wei;}edge[N*N*2]; struct ques{int fr,to,id;}qs[M],l[M],r[M]; deque<int>Q; il int read() { rg char ch=gc;rg int x=0;rg bool y=1; while(ch!='-' && (ch>'9' || ch<'0'))ch=gc; if(ch=='-')ch=gc,y=0; while(ch>='0' && ch<='9')x=(x<<1)+(x<<3)+(ch^'0'),ch=gc; return y?x:-x; } il void ad(int x,int y,int z){edge[++ed_cnt]=(ed){x,y,z};} il bool cmp(ed x,ed y){return x.wei<y.wei;} int fd(int x){return fa[x]==x?x:fa[x]=fd(fa[x]);} il void bfs() { while(!Q.empty()) { int nw=Q.front();Q.pop_front(); if(nw-n>0)if(!vis[nw-n])Q.push_back(nw-n),vis[nw-n]=1,dis[nw-n]=dis[nw]+1; if(nw-n-1>0)if(!vis[nw-n-1])Q.push_back(nw-n-1),vis[nw-n-1]=1,dis[nw-n-1]=dis[nw]+1; if(nw-n+1>0)if(!vis[nw-n+1])Q.push_back(nw-n+1),vis[nw-n+1]=1,dis[nw-n+1]=dis[nw]+1; if(nw-1>0)if(!vis[nw-1])Q.push_back(nw-1),vis[nw-1]=1,dis[nw-1]=dis[nw]+1; if(nw+1<=n*n)if(!vis[nw+1])Q.push_back(nw+1),vis[nw+1]=1,dis[nw+1]=dis[nw]+1; if(nw+n-1<=n*n)if(!vis[nw+n-1])Q.push_back(nw+n-1),vis[nw+n-1]=1,dis[nw+n-1]=dis[nw]+1; if(nw+n<=n*n)if(!vis[nw+n])Q.push_back(nw+n),vis[nw+n]=1,dis[nw+n]=dis[nw]+1; if(nw+n+1<=n*n)if(!vis[nw+n+1])Q.push_back(nw+n+1),vis[nw+n+1]=1,dis[nw+n+1]=dis[nw]+1; } } il void solv(int qs_l,int qs_r,int as_l,int as_r) { if(qs_l>qs_r)return;if(as_l==as_r){rp(i,qs_l,qs_r)as[qs[i].id]=as_l;return;} int mid=(as_l+as_r+1)>>1,cntl=0,cntr=0;rp(i,1,n*n)fa[i]=i; my(i,ed_cnt,1)if(edge[i].wei>=mid){int fafr=fd(edge[i].fr),fato=fd(edge[i].to);fa[fafr]=fato;}else break; rp(i,qs_l,qs_r)if(fd(qs[i].fr)!=fd(qs[i].to))l[++cntl]=qs[i];else r[++cntr]=qs[i]; rp(i,0,cntl-1)qs[qs_l+i]=l[i+1];rp(i,0,cntr-1)qs[qs_r-i]=r[i+1]; solv(qs_l,qs_l+cntl-1,as_l,mid-1);solv(qs_l+cntl,qs_r,mid,as_r); } int main() { n=read(); rp(i,1,n){string str;cin>>str;rp(j,1,n)if(str[j-1]=='#')Q.push_front((i-1)*n+j),vis[(i-1)*n+j]=1;} rp(i,1,n) { if(!vis[i])Q.push_back(i),dis[i]=vis[i]=1; if(!vis[n*n-i+1])Q.push_back(n*n-i+1),dis[n*n-i+1]=vis[n*n-i+1]=1; if(!vis[(i-1)*n+1])Q.push_back((i-1)*n+1),dis[(i-1)*n+1]=vis[(i-1)*n+1]=1; if(!vis[(i-1)*n+n])Q.push_back((i-1)*n+n),dis[(i-1)*n+n]=vis[i*n]=1; } bfs(); rp(i,1,n) rp(j,1,n) { if(i!=1)if(dis[(i-1)*n+j] && dis[(i-2)*n+j])ad((i-1)*n+j,(i-2)*n+j,min(dis[(i-1)*n+j],dis[(i-2)*n+j])); if(j!=1)if(dis[(i-1)*n+j] && dis[(i-1)*n+j-1])ad((i-1)*n+j,(i-1)*n+j-1,min(dis[(i-1)*n+j],dis[(i-1)*n+j-1])); } sort(edge+1,edge+1+ed_cnt,cmp);rp(i,1,n*n)fa[i]=i;rp(i,1,ed_cnt){int fafr=fd(edge[i].fr),fato=fd(edge[i].to);fa[fafr]=fato;} q=read(); rp(i,1,q) { int x=read(),y=read();qs[i].fr=(x-1)*n+y;x=read(),y=read();qs[i].to=(x-1)*n+y; if(fd(qs[i].fr)!=fd(qs[i].to))as[i]=0,qs[i].to=qs[i].fr;else qs[i].id=i; } solv(1,q,1,n<<1);rp(i,1,q)printf("%d\n",max(as[i]*2-1,0)); return 0; }