洛谷 P3684 机棚障碍Hangar Hurdles [CERC2016] 图论

正解:

解题报告:

传送门!

首先不难想到这题主要有两个问题需要解决,一个是预处理出各个点的箱子半径最大值,一个是求ans

然后分别港下QwQ

首先关于预处理要说下昂

预处理有三种方法,分别港下

第一种是从障碍点出发,八联通bfs

就bfs,最开始是所有障碍点加入队列中,然后八联通bfs地转移,每个点第一次被找到的时候就是它能放的最大箱子的半径

第二种是二维前缀和

这个我还马油get等看了代码再来repo趴QAQ

第三种是二分

同上QAQ

然后关于具体求解,有两个正解和一个听说是假的但是听说跑得挺快的代码

第一种是最大生成树

第二种是kruscal重构树

第三种是整体二分(这个听说复杂度是假的,,,?但是好像跑得过去而且还挺快的hhhh

然后我可能会放整体二分&最大生成树的代码趴,,,kruscal重构树过几天学昂QwQ

然后,因为我考场上打的是整体二分所以我先做的整体二分嘛

然后蜜汁WA了一个点,,,

然后我改了2h之后,发现,我可能是个sd,,,

说下我哪儿错了QAQ

我不是连边嘛,我就直接把每个点往左边和上边连嘛

然后考虑到二维不好存不好表示,我就给改成了(i-1)*n+j

然后这时候有个问题昂!如果有个点!它在最左侧,那它就不能向左边连边了嘛!

然后我忘记判了直接连边于是90pts滚粗嘤嘤嘤,,,

#include<bits/stdc++.h>
using namespace std;
#define il inline
#define rg register
#define gc getchar()
#define rp(i,x,y) for(rg int i=x;i<=y;++i)
#define my(i,x,y) for(rg int i=x;i>=y;--i)

const int N=1100,M=300000+10;
int n,q,as[M],ed_cnt,fa[N*N],dis[N*N];
bool vis[N*N];
struct ed{int fr,to,wei;}edge[N*N*2];
struct ques{int fr,to,id;}qs[M],l[M],r[M];
deque<int>Q;

il int read()
{
    rg char ch=gc;rg int x=0;rg bool y=1;
    while(ch!='-' && (ch>'9' || ch<'0'))ch=gc;
    if(ch=='-')ch=gc,y=0;
    while(ch>='0' && ch<='9')x=(x<<1)+(x<<3)+(ch^'0'),ch=gc;
    return y?x:-x;
}
il void ad(int x,int y,int z){edge[++ed_cnt]=(ed){x,y,z};}
il bool cmp(ed x,ed y){return x.wei<y.wei;}
int fd(int x){return fa[x]==x?x:fa[x]=fd(fa[x]);}
il void bfs()
{
    while(!Q.empty())
    {
        int nw=Q.front();Q.pop_front();
        if(nw-n>0)if(!vis[nw-n])Q.push_back(nw-n),vis[nw-n]=1,dis[nw-n]=dis[nw]+1;
        if(nw-n-1>0)if(!vis[nw-n-1])Q.push_back(nw-n-1),vis[nw-n-1]=1,dis[nw-n-1]=dis[nw]+1;
        if(nw-n+1>0)if(!vis[nw-n+1])Q.push_back(nw-n+1),vis[nw-n+1]=1,dis[nw-n+1]=dis[nw]+1;
        if(nw-1>0)if(!vis[nw-1])Q.push_back(nw-1),vis[nw-1]=1,dis[nw-1]=dis[nw]+1;
        if(nw+1<=n*n)if(!vis[nw+1])Q.push_back(nw+1),vis[nw+1]=1,dis[nw+1]=dis[nw]+1;
        if(nw+n-1<=n*n)if(!vis[nw+n-1])Q.push_back(nw+n-1),vis[nw+n-1]=1,dis[nw+n-1]=dis[nw]+1;
        if(nw+n<=n*n)if(!vis[nw+n])Q.push_back(nw+n),vis[nw+n]=1,dis[nw+n]=dis[nw]+1;
        if(nw+n+1<=n*n)if(!vis[nw+n+1])Q.push_back(nw+n+1),vis[nw+n+1]=1,dis[nw+n+1]=dis[nw]+1;
    }
}
il void solv(int qs_l,int qs_r,int as_l,int as_r)
{
    if(qs_l>qs_r)return;if(as_l==as_r){rp(i,qs_l,qs_r)as[qs[i].id]=as_l;return;}
    int mid=(as_l+as_r+1)>>1,cntl=0,cntr=0;rp(i,1,n*n)fa[i]=i;
    my(i,ed_cnt,1)if(edge[i].wei>=mid){int fafr=fd(edge[i].fr),fato=fd(edge[i].to);fa[fafr]=fato;}else break;
    rp(i,qs_l,qs_r)if(fd(qs[i].fr)!=fd(qs[i].to))l[++cntl]=qs[i];else r[++cntr]=qs[i];
    rp(i,0,cntl-1)qs[qs_l+i]=l[i+1];rp(i,0,cntr-1)qs[qs_r-i]=r[i+1];
    solv(qs_l,qs_l+cntl-1,as_l,mid-1);solv(qs_l+cntl,qs_r,mid,as_r);
}

int main()
{
    n=read();
    rp(i,1,n){string str;cin>>str;rp(j,1,n)if(str[j-1]=='#')Q.push_front((i-1)*n+j),vis[(i-1)*n+j]=1;}
    rp(i,1,n)
    {
        if(!vis[i])Q.push_back(i),dis[i]=vis[i]=1;
        if(!vis[n*n-i+1])Q.push_back(n*n-i+1),dis[n*n-i+1]=vis[n*n-i+1]=1;
        if(!vis[(i-1)*n+1])Q.push_back((i-1)*n+1),dis[(i-1)*n+1]=vis[(i-1)*n+1]=1;
        if(!vis[(i-1)*n+n])Q.push_back((i-1)*n+n),dis[(i-1)*n+n]=vis[i*n]=1;
    }
    bfs();
    rp(i,1,n)
        rp(j,1,n)
        {
            if(i!=1)if(dis[(i-1)*n+j] && dis[(i-2)*n+j])ad((i-1)*n+j,(i-2)*n+j,min(dis[(i-1)*n+j],dis[(i-2)*n+j]));
            if(j!=1)if(dis[(i-1)*n+j] && dis[(i-1)*n+j-1])ad((i-1)*n+j,(i-1)*n+j-1,min(dis[(i-1)*n+j],dis[(i-1)*n+j-1]));
        }
    sort(edge+1,edge+1+ed_cnt,cmp);rp(i,1,n*n)fa[i]=i;rp(i,1,ed_cnt){int fafr=fd(edge[i].fr),fato=fd(edge[i].to);fa[fafr]=fato;}
    q=read();
    rp(i,1,q)
    {
        int x=read(),y=read();qs[i].fr=(x-1)*n+y;x=read(),y=read();qs[i].to=(x-1)*n+y;
        if(fd(qs[i].fr)!=fd(qs[i].to))as[i]=0,qs[i].to=qs[i].fr;else qs[i].id=i;
    }
    solv(1,q,1,n<<1);rp(i,1,q)printf("%d\n",max(as[i]*2-1,0));
    return 0;
}
所以放下整体二分的代码QAQ

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值