bzoj4793 [CERC2016]Hangar Hurdles(bfs+最大生成树+贪心)

132 篇文章 0 订阅

首先我们可以预处理出以每一个格子为中心的最大正方形边长。
(以每一个障碍为起点,跑八联通bfs即可)
那么能从x点挪到y点的最大正方形边长就是两点间路径最小值的最大值。
也就是求一个最大瓶颈边,我们想到了最大生成树。
不过这个是点权的,处理起来比较奇怪qaq
我们按点权从大到小处理每一个点,和这个点周围的四个点,如果已经加进去了,就连起来。钦定父亲节点权值小于儿子节点,维护这棵最大生成树出来。两点间最小值就是树上lca的权值。
复杂度 O(n2+qlogn) O ( n 2 + q l o g n )

#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define inf 0x3f3f3f3f
#define N 1010
#define pi pair<int,int>
inline char gc(){
    static char buf[1<<16],*S,*T;
    if(T==S){T=(S=buf)+fread(buf,1,1<<16,stdin);if(T==S) return EOF;}
    return *S++;
}
inline int read(){
    int x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-') f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
    return x*f;
}
int m,n=0,id[N][N],fa[N*N][21],Log[N*N],dep[N*N],dis[N][N],a[N*N],pa[N*N];
int dx[]={0,0,1,-1,-1,-1,1,1},dy[]={1,-1,0,0,-1,1,-1,1};
char mp[N][N];bool vis[N][N];
vector<pi>c[N];
vector<int>Son[N*N];
inline void bfs(){
    queue<pi>q;memset(dis,inf,sizeof(dis));
    for(int i=1;i<=m;++i)
        for(int j=1;j<=m;++j)
            if(mp[i][j]=='#') q.push(make_pair(i,j)),dis[i][j]=0,vis[i][j]=1;
    while(!q.empty()){
        int x=q.front().first,y=q.front().second;q.pop();
        for(int k=0;k<8;++k){
            int xx=x+dx[k],yy=y+dy[k];
            if(xx<1||xx>m||yy<1||yy>m||vis[xx][yy]) continue;
            vis[xx][yy]=1;dis[xx][yy]=dis[x][y]+1;q.push(make_pair(xx,yy));
        }
    }for(int i=1;i<=m;++i)
        for(int j=1;j<=m;++j){
            if(!id[i][j]) continue;
            dis[i][j]=min(dis[i][j],min(min(i,m-i+1),min(j,m-j+1)));
            dis[i][j]<<=1;dis[i][j]--;a[id[i][j]]=dis[i][j];c[dis[i][j]].push_back(make_pair(i,j));
    }
}
inline int find(int x){return x==pa[x]?x:pa[x]=find(pa[x]);}
inline void merge(int x,int y){
    int xx=find(x);if(xx==y) return;pa[xx]=y;Son[y].push_back(xx);
}
inline void dfs(int x){
    for(int i=1;i<=Log[n];++i){
        if(!fa[x][i-1]) break;
        fa[x][i]=fa[fa[x][i-1]][i-1];
    }for(int i=0;i<Son[x].size();++i){
        int y=Son[x][i];dep[y]=dep[x]+1;fa[y][0]=x;dfs(y);
    }
}
inline int lca(int x,int y){
    if(dep[x]<dep[y]) swap(x,y);
    int d=dep[x]-dep[y];
    for(int i=0;i<=Log[d];++i)
        if(d>>i&1) x=fa[x][i];
    if(x==y) return x;
    for(int i=Log[n];i>=0;--i)
        if(fa[x][i]!=fa[y][i]) x=fa[x][i],y=fa[y][i];
    return fa[x][0];
}
int main(){
//  freopen("a.in","r",stdin);
    m=read();
    for(int i=1;i<=m;++i){
        scanf("%s",mp[i]+1);
        for(int j=1;j<=m;++j)
            if(mp[i][j]=='.') id[i][j]=++n;
    }bfs();memset(vis,0,sizeof(vis));Log[0]=-1;
    for(int i=1;i<=n;++i) pa[i]=i,Log[i]=Log[i>>1]+1;
    for(int i=m;i>=1;--i)
        for(int j=0;j<c[i].size();++j){
            int x=c[i][j].first,y=c[i][j].second;vis[x][y]=1;
            for(int k=0;k<4;++k){
                int xx=x+dx[k],yy=y+dy[k];
                if(xx<1||xx>m||yy<1||yy>m||!id[xx][yy]||!vis[xx][yy]) continue;
                merge(id[xx][yy],id[x][y]);
            }
        }for(int i=1;i<=n;++i) if(find(i)==i) merge(i,0);dfs(0);
    m=read();
    while(m--){
        int x1=read(),y1=read(),x2=read(),y2=read();
        int x=id[x1][y1],y=id[x2][y2];
        if(!x||!y){puts("0");continue;}
        printf("%d\n",a[lca(x,y)]);
    }return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值