概率论与数理统计的常用分布与相关性质

概率论中的分布有什么用

概率论中的常用分布就相当于建立了一个数学模型,只要符合这个模型的条件,就可以将实际的应用场景带入,使用对应的结论和性质。但在考试中,基本上会直接告诉我们是什么分布,所以只需要掌握公式性质会使用即可

概率论中常用的基本分布大致可分成两类:离散型(例如0-1分布、二项分布、泊松分布),连续型(均匀分布、指数分布、正态分布)。 离散型随机变量的值集合是有限的或可数无限的,连续型随机变量的值集合是某个区间或多个区间。
注:有的教材中方差用的是 V a r ( X ) Var(X) Var(X),本文中用 D ( X ) D(X) D(X)表示方差

离散型

0-1分布 X~B(1,p)

背景与定义
做一次伯努利试验(只有两种可能结果,分别用0和1表示)的结果服从0-1分布,例如抛一次硬币出现正面和反面的结果,例如抛骰子出现1点和非1点的结果

分布律
P { X = k } = p k q 1 − k , k = 0 , 1 ( 0 < p < 1 ) P\{X=k\}=p^kq^{1-k}, k=0,1 (0< p< 1) P{X=k}=pkq1k,k=0,1(0<p<1)
其中 p p p为一次伯努利实验中成功发生的概率.

期望与方差
0-1分布数学期望为 E ( X ) = p E(X)=p E(X)=p, 方差为 D ( X ) = p ( 1 − p ) D(X)=p(1−p) D(X)=p(1p)

二项分布 X~B(n,p)

背景与定义
n n n重独立的伯努利实验中成功的次数服从二项分布 B ( n , p ) B(n,p) B(n,p),其中 p p p为一次伯努利实验中成功发生的概率 ( 0 < p < 1 ) (0< p< 1) (0<p<1), k k k n n n次实验中成功的次数.例如独立的抛 n n n次硬币,则服从二项分布 B ( n , 1 2 ) B(n,\frac{1}{2}) B(n,21)

分布律
P ( X = k ) = C n k p k ( 1 − p ) n − k P( X=k)=C_n^kp^{k} ( 1-p)^{n-k} P(X=k)=Cnkpk(1p)nk
其中 C n k = n ! k ! ( n − k ) ! C_n^k=\frac{n!}{k!(n-k)!} Cnk=k!(nk)!n!
特别的,当 n = 1 n=1 n=1 时,二项分布就是0-1分布

期望与方差
二项分布 B ( n , p ) B(n,p) B(n,p) 的数学期望为 E ( X ) = n p E(X)=np E(X)=np, 方差为 D ( X ) = n p ( 1 − p ) D(X)=np(1-p) D(X)=np(1p)

泊松分布 X~P(λ)

背景与定义
单位时间【或单位面积、单位产品等】上稀有事件【不经常发生的事件】发生的次数服从泊松分布.例如如某一服务设施在一定时间内受到的服务请求的次数,机器出现的故障数、自然灾害发生的次数

分布律

P { X = k } = λ k k ! e − λ , k = 0 , 1 , 2 , … P\{X=k\}= \frac{λ^k}{k!} e^{-\lambda},k=0,1,2,… P{X=k}=k!λkeλ,k=0,1,2,
其中 λ λ λ为单位时间内事件发生的次数的期望

关于泊松分布的详细理解和推导可参考:https://blog.csdn.net/qq_42692386/article/details/125916391

期望与方差
E ( X ) = λ ; D ( X ) = λ E(X)=λ;D(X)=λ E(X)=λ;D(X)=λ

几何分布 X~G(p)

背景与定义
在多次伯努利试验中,事件A成功首次出现时的试验次数k。例如用枪打靶,第一次击中靶时射击的次数

分布律
P ( X = k ) = ( 1 − p ) k − 1 p    ;   k = 1 , 2 , . . P( X=k) =( 1-p)^{k-1} p\: \: ;\: k=1,2,.. P(X=k)=(1p)k1p;k=1,2,..
p p p为每次试验中事件A发生的概率

期望与方差:
E ( X ) = 1 p   ; D ( X ) = 1 − p p 2 E(X )=\frac{1}{p}\: ;D( X)=\frac{1-p}{p^{2}} E(X)=p1;D(X)=p21p

几何分布的无记忆性 (考研中不要求掌握)
X ∼ G ( p ) X\sim G( p ) XG(p) ,则对任意正整数m与n有: P ( X > m + n ∣ X > m ) = P ( X > n ) P( X> m+n| X> m)=P( X> n) P(X>m+nX>m)=P(X>n)

超几何分布 X~H(N,M,n)

背景与定义
从含有M个不合格产品的N个产品中,不放回地随机抽取n个,则其中含有的不合格品的个数服从超几何分布。

分布律
P ( X = k ) = C M k C N − M n − k C N n , k = 0 , 1 , . . . , r P( X=k) =\frac{ C_M^kC_{N-M}^{n-k} }{C_{N}^{n}}, k=0,1,...,r P(X=k)=CNnCMkCNMnk,k=0,1,...,r
其中 r = m i n { M , n } ; M ⩽ N ; n ⩽ N r=min\{M,n\};M⩽N;n⩽N r=min{M,n};MN;nN 且n,M,N均为正整数

期望与方差:(考研中不要求掌握)
E ( X ) = n M N E ( X)=n\frac{M}{N} E(X)=nNM
D ( X ) = n M ( N − M ) ( N − n ) N 2 ( N − 1 ) D( X )=\frac{nM ( N-M)( N-n) }{N^{2}( N-1 )} D(X)=N2(N1)nM(NM)(Nn)

超几何分布的二项近似:当 n < < N n< < N n<<N时 超几何分布可用二项分布 B ( n , M N ) B( n, \frac{M}{N}) B(n,NM) 近似,即
C M k C N − M n − k C N n = C n k p k ( 1 − p ) n − k \frac{ C_M^kC_{N-M}^{n-k} }{C_{N}^{n}}=C_n^kp^{k} ( 1-p)^{n-k} CNnCMkCNMnk=Cnkpk(1p)nk
其中 k = M N k=\frac{M}{N} k=NM.即当批量N较大、而抽出样品数n较小时,不返回抽样可看作返回抽样的近似。

连续型

均匀分布X~U[a,b]

背景与定义
落在某一连续的区间中任意等长度的可能性相同,也就是整个区间中概率密度相同

概率密度函数
f ( x ) = { 1 b − a , a < x < b 0 , 其他 f(x) = \begin{cases} \frac{1}{b-a}, & a<x<b\\ 0, & \text{其他} \end{cases} f(x)={ba1,0,a<x<b其他
概率分布函数
F ( x ) = { 0 , x < a x − a b − a , a ≤ x < b 1 , x ≥ b F(x) = \begin{cases} 0, & x<a\\ \frac{x-a}{b-a}, & a \leq x<b\\ 1, & x \geq b \end{cases} F(x)= 0,baxa,1,x<aax<bxb

期望与方差:
E ( X ) = a + b 2 E ( X)=\frac{a+b}{2} E(X)=2a+b
D ( X ) = ( a − b ) 2 12 D( X )=\frac{( a-b)^2 }{12} D(X)=12(ab)2

指数分布X~E[λ]

背景与定义
指数分布可以视为泊松分布的对应,独立随机事件发生的时间间隔服从指数分布。例如旅客进入机场的时间间隔、打进客服中心电话的时间间隔

概率密度函数
f ( x ) = { λ e − λ x , x ≥ 0 0 , 其他 f(x) = \begin{cases} \lambda e^{-\lambda{x}}, & x \geq 0\\ 0, & \text{其他} \end{cases} f(x)={λeλx,0,x0其他
其中 λ \lambda λ为每单位时间发生该事件的次数

概率分布函数
F ( x ) = { 1 − e − λ x , x ≥ 0 0 , 其他 F(x) = \begin{cases}1-e^{-\lambda{x}}, & x \geq 0\\ 0, & \text{其他} \end{cases} F(x)={1eλx,0,x0其他

期望与方差:
E ( X ) = 1 λ E (X)=\frac{1}{\lambda} E(X)=λ1
D ( X ) = 1 λ 2 D( X )=\frac{1 }{\lambda ^2} D(X)=λ21

更多详细的推导和解释可参考如下文章:https://blog.csdn.net/qq_42692386/article/details/138066899

正态分布 X~N( μ , σ 2 μ,σ^2 μ,σ2)

背景与定义
正态分布是最常见的分布,即在样本均值附近的样本比较多,而离均值越远的离群点的样本越少。例如一个城市中身高的分布,某个地区的年降水量等都服从正态分布

概率密度函数
f ( x ) = 1 σ 2 π   e − ( x − μ ) 2 2 σ 2 f(x)=\frac{1}{\sigma\sqrt{2\pi}} \, e^{ -\frac{(x- \mu)^2}{2\sigma^2}} f(x)=σ2π 1e2σ2(xμ)2

μ = 0 , σ = 1 \mu=0,\sigma=1 μ=0,σ=1时,正态分布就成为标准正态分布
f ( x ) = 1 2 π   e − x 2 2 f(x)=\frac{1}{\sqrt{2\pi}} \, e^{ -\frac{x^2}{2}} f(x)=2π 1e2x2

期望与方差:
E ( X ) = μ E (X)=\mu E(X)=μ
D ( X ) = σ 2 D( X )=\sigma^2 D(X)=σ2

参考文章:
https://blog.csdn.net/qq_29831163/article/details/89348592
https://blog.csdn.net/u013230189/article/details/109702771
在这里插入图片描述

  • 21
    点赞
  • 30
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值