自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

大雄没有叮当猫的博客

机器学习、深度学习、自然语言处理、大数据开发

原创 卷积神经网络模型之SPPNet模型实现

from torch import nn import math import torch """ Args: out_side (tuple): Length of side in the pooling results of each p...

2019-03-29 13:45:11 230 1

原创 卷积神经网络模型之ZFNet模型实现

import torch from torch.nn import functional as F from torch import nn class ZFNet(nn.Module): def __init__(self): super().__init__() ...

2019-03-29 11:04:27 383 0

原创 Python 类特殊方法之__getitem__

凡是在类中定义了这个__getitem__ 方法,那么它的实例对象(假定为p),可以像这样 p[key] 取值,当实例对象做p[key] 运算时,会调用类中的方法__getitem__。 一般如果想使用索引访问元素时,就可以在类中定义这个方法(__getitem__(self, key) )。...

2019-03-13 21:05:34 543 1

转载 《概率论与数理统计》之事件的相互关系及运算

                     转自浙江大学公开课课件

2019-02-26 19:53:31 666 0

原创 《概率论与数理统计》之样本空间和随机事件

1.自然界与社会生活中的两类现象:确定性现象和随机现象 确定性现象:在一定条件下必然发生的现象. 例如:在一个标准大气压下,水加热到100℃一定会沸腾. 随机现象:在一定条件下具有多种可能结果, 且试验时无法预知出现哪个结果的现象. 例如掷骰子可能出现“1点”,也可能是其他情况;检验产品...

2018-12-24 15:29:21 263 0

原创 tensorflow学习之softmax使用详解

1. 什么是Softmax Softmax 在机器学习和深度学习中有着非常广泛的应用。尤其在处理多分类(C > 2)问题,分类器最后的输出单元需要Softmax 函数进行数值处理。关于Softmax 函数的定义如下所示: 其中,Vi 是分类器类别的输出。i 表示类别索引,总的...

2018-09-25 10:39:48 11893 0

原创 tensorflow学习之stack_bidirectional_rnn使用详解

tf.contrib.rnn.stack_bidirectional_rnn tf.contrib.rnn.stack_bidirectional_rnn(     cells_fw,     cells_bw,     inputs,     initial_states_fw=None, ...

2018-09-24 17:28:16 2378 2

原创 tensorflow学习之MultiRNNCell详解

tf.contrib.rnn.MultiRNNCell Aliases: Class tf.contrib.rnn.MultiRNNCell Class tf.nn.rnn_cell.MultiRNNCell 由多个简单的cells组成的RNN cell。用于构建多层循环神经网络。 ...

2018-09-24 15:46:24 9239 1

原创 tensorflow学习之GRUCell详解

  tf.contrib.rnn.GRUCell Aliases: Class tf.contrib.rnn.GRUCell Class tf.nn.rnn_cell.GRUCell 门控循环单元cell __init__(     num_units,     activatio...

2018-09-23 15:58:41 6520 0

原创 tensorflow学习之LSTMStateTuple详解

Class LSTMStateTuple Aliases: Class tf.contrib.rnn.LSTMStateTuple Class tf.nn.rnn_cell.LSTMStateTuple 用于存储LSTM单元的state_size,zero_state和output stat...

2018-09-22 20:07:22 4089 0

原创 tensorflow学习之bidirectional_dynamic_rnn使用详解

tf.nn.bidirectional_dynamic_rnn tf.nn.bidirectional_dynamic_rnn(     cell_fw,     cell_bw,     inputs,     sequence_length=None,     initial_state...

2018-09-22 19:48:04 2628 0

原创 tensorflow学习之dynamic_rnn使用详解

tf.nn.dynamic_rnn 使用指定的RNNCell单元创建一个循环神经网络,对输入执行完全动态展开。 tf.nn.dynamic_rnn(     cell,     inputs,     sequence_length=None,     initial_state=None...

2018-09-22 17:36:54 2904 1

原创 tensorflow学习之LSTMCell详解

Class tf.contrib.rnn.LSTMCell 继承自:LayerRNNCell Aliases: Class tf.contrib.rnn.LSTMCell Class tf.nn.rnn_cell.LSTMCell 长短时记忆单元循环网络单元。默认的non-peephole...

2018-09-22 11:27:55 11245 0

原创 tensorflow学习之BasicLSTMCell详解

tf.contrib.rnn.BasicLSTMCell 继承自:LayerRNNCell Aliases: Class tf.contrib.rnn.BasicLSTMCell Class tf.nn.rnn_cell.BasicLSTMCell 基础的LSTM循环网络单元,基于http...

2018-09-21 23:13:06 11813 1

原创 tensorflow学习之static_bidirectional_rnn使用详解

tf.nn.static_bidirectional_rnn Aliases: tf.contrib.rnn.static_bidirectional_rnn tf.nn.static_bidirectional_rnn 创建双向循环神经网络。 与单向循环神经网络类似,只不过双向循环神经网...

2018-09-21 21:18:01 2744 1

原创 tensorflow学习之static_rnn使用详解

tf.nn.static_rnn Aliases: tf.contrib.rnn.static_rnn tf.nn.static_rnn 使用指定的RNN神经元创建循环神经网络 tf.nn.static_rnn(     cell,     inputs,     initial_...

2018-09-21 17:01:36 3663 0

转载 BasicRNNCell 和 BasicLSTMCell 的 output

在BasicRNNCell 和 BasicLSTMCell 的类中调用了call方法会得到output。 由上图可知h对应了BasicRNNCell的state_size。 那么y是不是对应了BasicRNNCell的output_size呢? 答案是否定的! 通过“ return o...

2018-09-21 16:23:40 605 0

原创 tensorflow学习之BasicRNNCell详解

1.循环神经网络 循环神经网络很像前馈神经网络,但是不同的是神经元有连接回指。 如上左图,一个循环神经元可以把自己的输出作为自身的输入,但是这个输入是上一个时间点的输出,如果将上面左图展开就变成右边的图:一个神经元在时间轴上的运行。 图右边的下标代表时间,循环神经元在时间 t 同时接受输...

2018-09-21 16:17:20 2374 0

转载 Maxout详解

一、相关理论    本篇博文主要讲解2013年,ICML上的一篇文献:《Maxout  Networks》,这个算法我目前也很少用到,个人感觉最主要的原因应该是这个算法参数个数会成k倍增加(k是maxout的一个参数),不过没关系,对于我们来说知识积累才是最重要的,指不定某一天我们就需要用到这个...

2018-09-21 11:53:35 5946 1

原创 tensorflow之tf.nn.static_bidirectional_rnn详解

tf.nn.static_bidirectional_rnn Aliases: tf.contrib.rnn.static_bidirectional_rnn tf.nn.static_bidirectional_rnn tf.nn.static_bidirectional_rnn(   ...

2018-09-20 21:33:51 2787 0

原创 《统计学习方法》摘记之朴素贝叶斯法

朴素贝叶斯(naive Bayes)法是基于贝叶斯定理和特征条件独立假设的分类方法。对于给定的训练数据集,首先基于特征条件独立假设学习输入/输出的联合概率;然后基于此模型,对给定的输入x,利用贝叶斯定理求出后验概率最大的输出y。 1.朴素贝叶斯法的学习与分类 1.1 学习 给定输入集合X,输...

2018-09-20 16:57:37 301 0

原创 《深度学习》摘记之前馈神经网络(2):学习XOR

为了使前馈神经网络更加具体,通过解决一个简单的任务:学习XOR函数来加深理解。 XOR函数(异或)是两个二进制值x1和x2的运算。当x1和x2中恰有一个为1时,函数返回1,否则返回0。我们想要学习的目标函数y=f*(x),模型给出了一个函数y=f(x;θ),学习算法通过不断调整参数θ来使得f尽可...

2018-09-20 13:58:06 790 0

原创 《深度学习》摘记之前馈神经网络(1)

前馈神经网络也叫作深度前馈网络或者多层感知机,是典型的深度学习模型。前馈神经网络的目标是近似某个函数f*。例如,对于分类器,y=f*(x)映射到一个类别标签y。通过定义一个x到y的映射y=f(x;θ),并学习参数θ的值,使映射能够得到最佳的函数近似。 之所以被称为前馈网络,是因为信息流过x的函数...

2018-09-20 13:54:56 640 0

原创 tf.nn.dynamic_rnn和MultiRNNCell构建多层动态LSTM

import tensorflow as tf; import numpy as np; X = tf.random_normal(shape=[3, 5, 6], dtype=tf.float32) X = tf.reshape(X, [-1, 5, 6]) stacked_rnn=[] f...

2018-09-19 20:45:11 3128 0

原创 tf.contrib.rnn.static_bidirectional_rnn和MultiRNNCell构建多层静态双向LSTM

import tensorflow as tf import numpy as np # 设置训练参数 learning_rate = 0.01 max_examples = 40 batch_size = 128 display_step = 10 # 每间隔10次训练就展示一次训练情况 ...

2018-09-19 20:44:09 1355 2

原创 tf.nn.bidirectional_dynamic_rnn和MultiRNNCell构建双向多层RNN(LSTM)

import tensorflow as tf import numpy as np X = np.random.randn(10, 5, 5) # 输入数据,批次、序列长度、样本维度 # 第二个样本的维度为3 X[1, 2:] = 0 stacked_rnn = [] stacke...

2018-09-19 20:39:49 1432 0

原创 tensorflow损失函数之:softmax_cross_entropy_with_logits和softmax_cross_entropy_with_logits_v2的区别

tf.nn.softmax_cross_entropy_with_logits(     _sentinel=None,     labels=None,     logits=None,     dim=-1,     name=None ) tf.nn.softmax_cross_en...

2018-09-19 20:06:15 1133 0

原创 tensorflow之损失函数:sparse_softmax_cross_entropy_with_logits 与 softmax_cross_entropy_with_logits的区别

原函数:  tf.nn.sparse_softmax_cross_entropy_with_logits( _sentinel=None, labels=None, logits=None, name=None ) tf.nn.softmax_cross_en...

2018-09-19 19:33:42 286 0

原创 tensorflow之神经网络层:Flatten,flatten

1.tf.layers.Flatten Class Flatten:在保留第0轴的情况下对输入的张量进行Flatten(扁平化) 代码示例: x=tf.placeholder(shape=(None,4,4),dtype='float32') y=tf.l...

2018-09-19 17:53:22 14621 1

原创 tensorflow之神经网络层:Dense,dense,Dropout,dropout

1.tf.layers.Dense Class Dense:全连接层 该层实现了outputs=activation(inputs*kernel+bias),其中激活函数是作为参数提供的,kernel是该层创建的权重矩阵,而bias是该层创建的偏置向量(仅当use_bias为True)。 参...

2018-09-19 17:41:56 4867 0

原创 tensorflow之神经网络层:MaxPooling1D、max_pooling1d、MaxPooling2D、max_pooling2d

微信公众号:数据挖掘与分析学习 1.tf.layers.MaxPooling1D Class MaxPooling1D:1D输入的最大池化层 参数: pool_size:一个整数或者一个单个整数的tuple/list,表示池化窗口的大小 strides:一个整数或者一个单个整数的tupl...

2018-09-19 15:28:24 16707 1

原创 tensorflow之神经网络层:AveragePooling2D、average_pooling2d、Conv2D和conv2d

微信公众号:数据挖掘与分析学习 1. tf.layers.Conv2D Class Conv2D:2D卷积层,如图像上的空间卷积 该层创建卷积核,该卷积核与层的输入卷积(实际上是交叉相关)以产生输出张量。 如果use_bias为True(并且提供了bias_initializer),则会创建...

2018-09-19 14:28:28 3956 0

原创 tensorflow之神经网络层:AveragePooling1D、average_pooling1d、Conv1D和conv1d

1.tf.layers.AveragePooling1D Class AveragePooling1D:对一维的输入作平均池化 参数: pool_size:一个整数或者一个单个整数的tuple/list,表示池化窗口的大小 Strides:一个整数或者一个单个整数的tuple/list,指...

2018-09-19 12:53:18 2664 0

原创 python机器学习之10分钟掌握pandas

微信公众号:数据挖掘与分析学习 1.创建对象 通过传递值列表来创建Series,让pandas创建一个默认的整数索引: 通过传递带有日期时间索引和标记列的NumPy数组来创建DataFrame: 通过传递可以转换为类似series的对象的dict来创建DataFrame。 生...

2018-09-18 16:56:15 199 0

翻译 机器学习之决策树算法原理详解

微信公众号:数据挖掘与分析学习 在本文中,我们将讨论决策树背后的理论和工作原理。 我们将看到该算法的一些数学知识,即熵和信息增益。 1.动机 假设我们有以下两个类别的图,由黑色圆圈和蓝色方块表示。 是否可以画一条分离线将两个类别分开? 也许没有。 你能花一条线将它们分开吗? 我们需要...

2018-09-18 16:52:35 94 0

转载 Python 迭代器 & __iter__方法

迭代器就是重复地做一些事情,可以简单的理解为循环,在python中实现了__iter__方法的对象是可迭代的,实现了next()方法的对象是迭代器,这样说起来有点拗口,实际上要想让一个迭代器工作,至少要实现__iter__方法和next方法。很多时候使用迭代器完成的工作使用列表也可以完成,但是如果...

2018-09-18 16:51:10 480 0

原创 gensim学习之语料库和向量空间

微信公众号:数据挖掘与分析学习 1.字符串转为向量 1.1导入所需库 import logging logging.basicConfig(format='%(asctime)s:%(levelname)s:%(message)s',level=loggi...

2018-09-18 10:44:24 592 0

原创 python自然语言处理库之gensim简介

微信公众号:数据挖掘与分析学习 Gensim是一个免费的 Python库,旨在从文档中自动提取语义主题,尽可能高效(计算机方面)和无痛(人性化)。 Gensim旨在处理原始的非结构化数字文本(“ 纯文本 ”)。 在Gensim的算法,比如Word2Vec,FastText,潜在语义分析(LS...

2018-09-18 10:41:48 389 0

原创 tensorflow神经网络训练流程

微信公众号:数据挖掘与分析学习 1.导入所需的库 from __future__ import print_function from tensorflow.examples.tutorials.mnist import input_data import tensor...

2018-09-17 20:51:56 436 0

原创 tensorflow之算术运算符:truediv、floordiv、realdiv、truncatediv

微信公众号:数据挖掘与分析学习 1. tf.truediv 按元素除法x / y(使用Python 3除法运算符语义)。 注意:首选使用Tensor运算符或遵循Python除法运算符语义的tf.divide。此函数强制使用Python 3除法运算符语义,其中所有整数参数首先转换为浮点类型。 ...

2018-09-17 20:49:40 6077 0

提示
确定要删除当前文章?
取消 删除