大雄没有叮当猫的博客

机器学习、深度学习、自然语言处理、大数据开发

《概率论与数理统计》之样本空间和随机事件

1.自然界与社会生活中的两类现象:确定性现象和随机现象 确定性现象:在一定条件下必然发生的现象. 例如:在一个标准大气压下,水加热到100℃一定会沸腾. 随机现象:在一定条件下具有多种可能结果, 且试验时无法预知出现哪个结果的现象. 例如掷骰子可能出现“1点”,也可能是其他情况;检验产品...

2018-12-24 15:29:21

阅读数 12

评论数 0

tensorflow学习之softmax使用详解

1. 什么是Softmax Softmax 在机器学习和深度学习中有着非常广泛的应用。尤其在处理多分类(C > 2)问题,分类器最后的输出单元需要Softmax 函数进行数值处理。关于Softmax 函数的定义如下所示: 其中,Vi 是分类器类别的输出。i 表示类别索...

2018-09-25 10:39:48

阅读数 732

评论数 0

tensorflow学习之stack_bidirectional_rnn使用详解

tf.contrib.rnn.stack_bidirectional_rnn tf.contrib.rnn.stack_bidirectional_rnn(     cells_fw,     cells_bw,     inputs,     initial_states_fw=None, ...

2018-09-24 17:28:16

阅读数 464

评论数 1

tensorflow学习之MultiRNNCell详解

tf.contrib.rnn.MultiRNNCell Aliases: Class tf.contrib.rnn.MultiRNNCell Class tf.nn.rnn_cell.MultiRNNCell 由多个简单的cells组成的RNN cell。用于构建多层循环神经网络。 ...

2018-09-24 15:46:24

阅读数 1197

评论数 0

tensorflow学习之GRUCell详解

  tf.contrib.rnn.GRUCell Aliases: Class tf.contrib.rnn.GRUCell Class tf.nn.rnn_cell.GRUCell 门控循环单元cell __init__(     num_units,     activatio...

2018-09-23 15:58:41

阅读数 472

评论数 0

tensorflow学习之LSTMStateTuple详解

Class LSTMStateTuple Aliases: Class tf.contrib.rnn.LSTMStateTuple Class tf.nn.rnn_cell.LSTMStateTuple 用于存储LSTM单元的state_size,zero_state和output stat...

2018-09-22 20:07:22

阅读数 728

评论数 0

tensorflow学习之bidirectional_dynamic_rnn使用详解

tf.nn.bidirectional_dynamic_rnn tf.nn.bidirectional_dynamic_rnn(     cell_fw,     cell_bw,     inputs,     sequence_length=None,     initial_state...

2018-09-22 19:48:04

阅读数 214

评论数 0

tensorflow学习之dynamic_rnn使用详解

tf.nn.dynamic_rnn 使用指定的RNNCell单元创建一个循环神经网络,对输入执行完全动态展开。 tf.nn.dynamic_rnn(     cell,     inputs,     sequence_length=None,     initial_state=None...

2018-09-22 17:36:54

阅读数 391

评论数 0

tensorflow学习之LSTMCell详解

Class tf.contrib.rnn.LSTMCell 继承自:LayerRNNCell Aliases: Class tf.contrib.rnn.LSTMCell Class tf.nn.rnn_cell.LSTMCell 长短时记忆单元循环网络单元。默认的non-peephole...

2018-09-22 11:27:55

阅读数 850

评论数 0

tensorflow学习之BasicLSTMCell详解

tf.contrib.rnn.BasicLSTMCell 继承自:LayerRNNCell Aliases: Class tf.contrib.rnn.BasicLSTMCell Class tf.nn.rnn_cell.BasicLSTMCell 基础的LSTM循环网络单元,基于http...

2018-09-21 23:13:06

阅读数 522

评论数 0

tensorflow学习之static_bidirectional_rnn使用详解

tf.nn.static_bidirectional_rnn Aliases: tf.contrib.rnn.static_bidirectional_rnn tf.nn.static_bidirectional_rnn 创建双向循环神经网络。 与单向循环神经网络类似,只不过双向循环神经网...

2018-09-21 21:18:01

阅读数 707

评论数 0

tensorflow学习之static_rnn使用详解

tf.nn.static_rnn Aliases: tf.contrib.rnn.static_rnn tf.nn.static_rnn 使用指定的RNN神经元创建循环神经网络 tf.nn.static_rnn(     cell,     inputs,     initial_...

2018-09-21 17:01:36

阅读数 473

评论数 0

BasicRNNCell 和 BasicLSTMCell 的 output

在BasicRNNCell 和 BasicLSTMCell 的类中调用了call方法会得到output。 由上图可知h对应了BasicRNNCell的state_size。 那么y是不是对应了BasicRNNCell的output_size呢? 答案是否定的! 通过“ return o...

2018-09-21 16:23:40

阅读数 94

评论数 0

tensorflow学习之BasicRNNCell详解

1.循环神经网络 循环神经网络很像前馈神经网络,但是不同的是神经元有连接回指。 如上左图,一个循环神经元可以把自己的输出作为自身的输入,但是这个输入是上一个时间点的输出,如果将上面左图展开就变成右边的图:一个神经元在时间轴上的运行。 图右边的下标代表时间,循环神经元在时间 t 同时接受输...

2018-09-21 16:17:20

阅读数 299

评论数 0

Maxout详解

一、相关理论    本篇博文主要讲解2013年,ICML上的一篇文献:《Maxout  Networks》,这个算法我目前也很少用到,个人感觉最主要的原因应该是这个算法参数个数会成k倍增加(k是maxout的一个参数),不过没关系,对于我们来说知识积累才是最重要的,指不定某一天我们就需要用到这个...

2018-09-21 11:53:35

阅读数 187

评论数 0

tensorflow之tf.nn.static_bidirectional_rnn详解

tf.nn.static_bidirectional_rnn Aliases: tf.contrib.rnn.static_bidirectional_rnn tf.nn.static_bidirectional_rnn tf.nn.static_bidirectional_rnn(   ...

2018-09-20 21:33:51

阅读数 693

评论数 0

《统计学习方法》摘记之朴素贝叶斯法

朴素贝叶斯(naive Bayes)法是基于贝叶斯定理和特征条件独立假设的分类方法。对于给定的训练数据集,首先基于特征条件独立假设学习输入/输出的联合概率;然后基于此模型,对给定的输入x,利用贝叶斯定理求出后验概率最大的输出y。 1.朴素贝叶斯法的学习与分类 1.1 学习 给定输入集合X,输...

2018-09-20 16:57:37

阅读数 51

评论数 0

《深度学习》摘记之前馈神经网络(2):学习XOR

为了使前馈神经网络更加具体,通过解决一个简单的任务:学习XOR函数来加深理解。 XOR函数(异或)是两个二进制值x1和x2的运算。当x1和x2中恰有一个为1时,函数返回1,否则返回0。我们想要学习的目标函数y=f*(x),模型给出了一个函数y=f(x;θ),学习算法通过不断调整参数θ来使得f尽可...

2018-09-20 13:58:06

阅读数 88

评论数 0

《深度学习》摘记之前馈神经网络(1)

前馈神经网络也叫作深度前馈网络或者多层感知机,是典型的深度学习模型。前馈神经网络的目标是近似某个函数f*。例如,对于分类器,y=f*(x)映射到一个类别标签y。通过定义一个x到y的映射y=f(x;θ),并学习参数θ的值,使映射能够得到最佳的函数近似。 之所以被称为前馈网络,是因为信息流过x的函数...

2018-09-20 13:54:56

阅读数 117

评论数 0

tf.nn.dynamic_rnn和MultiRNNCell构建多层动态LSTM

import tensorflow as tf; import numpy as np; X = tf.random_normal(shape=[3, 5, 6], dtype=tf.float32) X = tf.reshape(X, [-1, 5, 6]) stacked_rnn=[] f...

2018-09-19 20:45:11

阅读数 714

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭