-
题目描述
给你一根长度为n的绳子,请把绳子剪成整数长的m段(m、n都是整数,n>1并且m>1),每段绳子的长度记为k[0],k[1],…,k[m]。请问k[0]xk[1]x…xk[m]可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。 -
输入描述:
输入一个数n,意义见题面。(2 <= n <= 60)
方法一:动态规划
class Solution {
public:
int cutRope(int number) {
if(number<2)
return 0;
if(number==2)
return 1;
if(number==3)
return 2;//上面表示的是绳子长为上述情况时的输出;
vector<int> v1(number+1,0);
v1[0]=0;
v1[1]=1;
v1[2]=2;
v1[3]=3;//这里的值表示的是将绳子分割之后的相乘时的值
int max;
for(int i=4;i<number+1;i++)
{
max=0;
for(int j=1;j<i/2+1;j++)
{
if(v1[j]*v1[i-j]>max)
max=v1[j]*v1[i-j];
}
v1[i]=max;
}
max=v1[number];
return max;
}
};
方法二:递归
class Solution {
public:
int cutRopeCore(int number)
{
if(number<4)
return number;
int max=0;
for(int j=1;j<number/2+1;j++)
{
int r1=cutRopeCore(j);
int r2=cutRopeCore(number-j);
if(r1*r2>max)
max=r1*r2;
}
return max;
}
int cutRope(int number) {
if(number<2)
return 0;
if(number==2)
return 1;
if(number==3)
return 2;//上面表示的是绳子长为上述情况时的输出;
return cutRopeCore(number);
}
};
方法三:数学方法
class Solution {
public:
int cutRope(int number) {
if(number<2)
return 0;
if(number==2)
return 1;
if(number==3)
return 2;
int m=number%3;
switch(m)
{
case 0:
return pow(3,number/3);
case 1:
return pow(3,number/3-1)*4;
case 2:
return pow(3,number/3)*2;
}
}
};