目录
0.简介
本篇文章主要处理具有视差图像的拼接问题,主要采用局部的拼接方法。考虑到仅需要局部区域对齐,就可以无缝的融合在一起。整体思路:在配准方法上,结合单应性变换和局部扭曲bian'huan(APAP)去解决视差和局部失真,具体实现上,论文首先采用随机搜索算法进行单应性矩阵的搜索并,并寻找拼接缝(考虑到几何对齐和图像内容)和采用拼接缝成本作为一个质量度量函数。然后我们用单应性矩阵进行预对齐,并采用局部扭曲矩阵进行局部对齐。最后使用标准的切割缝算法和多波段融合算法将对齐的图像组合在一起。
本文的思想建立于:
本文提出了一种视差容忍图像拼接方法。我们的方法是建立在一个观察,对齐图像完美的整个重叠区域是不需要的图像拼接。相反,我们只需要将它们对齐,使重叠区域中存在一个局部区域,可以将这些图像拼接在一起。我们称这种方法为局部拼接,并开发了一种有效的方法来找到这种允许最优拼接的局部对齐。我们的局部拼接方法采用了一种混合对齐模型,该模型同时使用了单应性和内容保持的翘曲。单应性可以保持全局图像结构,但不能处理视差。与此相反,内容保持翘曲比单应变换能更好地处理视差,但不能像单应变换那样保持全局图像结构。此外,局部拼接仍然偏爱配准比较好、较大的局部公共区域。(但配准的好和想要局部区域比较大是冲突的)因此采用松散的单应性矩阵
1.具体实现
1.1整体思路
检测SIFT特征点→随机选择一个种子特征点→并对邻近的特征点进行分组→估计对齐结果(对齐结果希望找到一个特征分布紧凑的局部区域上,并估计拼接质量,不断循环,若质量够好)→缝合下面我们首先讨论该算法的一些关键组成部分,然后给出一个详细的算法描述。
1.2对齐模型的选择
目前拼接的主流选择有:全局2D变换,经典的Homography变换,空间变形(如内容保留变形),其中全局2D变化最大的优点是,不会有令人反感的局部变形,但是由于其地灵活性,无法处理视差。在图像拼接中,没有必要在整个重叠区域精准的对齐图像,但是可以在尽可能大的公共区域内对齐图像。相比之下,内容保留变形更加灵活,可以更好的对齐图像,但是存在局部失真的问题。因此作