排序算法(各种排序算法详解)

排序算法

冒泡排序

冒泡排序(Bubble Sorting)的基本思想是:通过对待排序序列从前向后(从下标较小的元素开始),依次比较相邻元素的值,若发现逆序则交换,使值较大的元素逐渐从前移向后部,就象水底下的气泡一样逐渐向上冒。

图解

如图:

  • 每次排序固定一个最大值
  • 一共进行 size - 1 次大的循环
  • 每一趟排序的次数在逐渐的递减

ps:如果我们发现在某趟排序中,没有发生一次交换, 可以提前结束冒泡排序。(这个就是优化)

在这里插入图片描述

代码

注释的代码是上面图解的每一步过程~

package com.atguigu.sort;

import java.util.Arrays;

//author qij
public class BubbleSort {

   public static void main(String[] args) {
      int arr[] = {3, 9, -1, 10, 20};
      
      //测试冒泡排序
      bubbleSort(arr);

      System.out.println("排序后");
      System.out.println(Arrays.toString(arr));

      /*
      
      // 第二趟排序,就是将第二大的数排在倒数第二位
      
      for (int j = 0; j < arr.length - 1 - 1 ; j++) {
         // 如果前面的数比后面的数大,则交换
         if (arr[j] > arr[j + 1]) {
            temp = arr[j];
            arr[j] = arr[j + 1];
            arr[j + 1] = temp;
         }
      }
      
      System.out.println("第二趟排序后的数组");
      System.out.println(Arrays.toString(arr));
      
      
      // 第三趟排序,就是将第三大的数排在倒数第三位
      
      for (int j = 0; j < arr.length - 1 - 2; j++) {
         // 如果前面的数比后面的数大,则交换
         if (arr[j] > arr[j + 1]) {
            temp = arr[j];
            arr[j] = arr[j + 1];
            arr[j + 1] = temp;
         }
      }

      System.out.println("第三趟排序后的数组");
      System.out.println(Arrays.toString(arr));
      
      // 第四趟排序,就是将第4大的数排在倒数第4位

      for (int j = 0; j < arr.length - 1 - 3; j++) {
         // 如果前面的数比后面的数大,则交换
         if (arr[j] > arr[j + 1]) {
            temp = arr[j];
            arr[j] = arr[j + 1];
            arr[j + 1] = temp;
         }
      }

      System.out.println("第四趟排序后的数组");
      System.out.println(Arrays.toString(arr)); */
      
   }
   
   // 将前面额冒泡排序算法,封装成一个方法
   public static void bubbleSort(int[] arr) {
      // 冒泡排序 的时间复杂度 O(n^2), 自己写出
      int temp = 0; // 临时变量
      boolean flag = false; // 标识变量,表示是否进行过交换
      for (int i = 0; i < arr.length - 1; i++) {

         for (int j = 0; j < arr.length - 1 - i; j++) {
            // 如果前面的数比后面的数大,则交换
            if (arr[j] > arr[j + 1]) {
               flag = true;
               temp = arr[j];
               arr[j] = arr[j + 1];
               arr[j + 1] = temp;
            }
         }
         //System.out.println("第" + (i + 1) + "趟排序后的数组");
         //System.out.println(Arrays.toString(arr));

         if (!flag) { // 在一趟排序中,一次交换都没有发生过
            break;
         } else {
            flag = false; // 重置flag!!!, 进行下次判断
         }
      }
   }

}

选择排序

选择式排序也属于内部排序法,是从要排序的数据中,按指定的规则选出某一元素,再依规定交换位置后达到排序的目的。

图解

在这里插入图片描述

代码
package com.atguigu.sort;

import java.util.Arrays;

//author qij
public class SelectSort {

   public static void main(String[] args) {
      int [] arr = {101, 34, 119, 1, -1, 90, 123};

      System.out.println("排序前");
      System.out.println(Arrays.toString(arr));
      
      selectSort(arr);

      System.out.println("排序后");
      System.out.println(Arrays.toString(arr));
      
      
   }
   
   //选择排序
   public static void selectSort(int[] arr) {
      
      //在推导的过程,我们发现了规律,因此,可以使用for来解决
      //选择排序时间复杂度是 O(n^2)
      for (int i = 0; i < arr.length - 1; i++) {
         int minIndex = i;
         int min = arr[i];
         for (int j = i + 1; j < arr.length; j++) {
            if (min > arr[j]) { // 说明假定的最小值,并不是最小
               min = arr[j]; // 重置min
               minIndex = j; // 重置minIndex
            }
         }

         // 将最小值,放在arr[0], 即交换
         if (minIndex != i) {
            arr[minIndex] = arr[i];
            arr[i] = min;
         }

      }
      
      
      /*
      
      //使用逐步推导的方式来,讲解选择排序
      //原始的数组 :  101, 34, 119, 1
      
      //第1轮
      int minIndex = 0;
      int min = arr[0];
      //先找到最小值在哪个数组下标数据
      for(int j = 0 + 1; j < arr.length; j++) {
         if (min > arr[j]) { //说明假定的最小值,并不是最小
            min = arr[j]; //重置min
            minIndex = j; //重置minIndex
         }
      }

      //将最小值进行交换
      if(minIndex != 0) {
         arr[minIndex] = arr[0];
         arr[0] = min;
      }
      
      System.out.println("第1轮后~~");
      System.out.println(Arrays.toString(arr));// 1, 34, 119, 101
      
      
      //第2轮
      minIndex = 1;
      min = arr[1];
      for (int j = 1 + 1; j < arr.length; j++) {
         if (min > arr[j]) { // 说明假定的最小值,并不是最小
            min = arr[j]; // 重置min
            minIndex = j; // 重置minIndex
         }
      }

      // 将最小值,放在arr[0], 即交换
      if(minIndex != 1) {
         arr[minIndex] = arr[1];
         arr[1] = min;
      }

      System.out.println("第2轮后~~");
      System.out.println(Arrays.toString(arr));// 1, 34, 119, 101
      
      //第3轮
      minIndex = 2;
      min = arr[2];
      for (int j = 2 + 1; j < arr.length; j++) {
         if (min > arr[j]) { // 说明假定的最小值,并不是最小
            min = arr[j]; // 重置min
            minIndex = j; // 重置minIndex
         }
      }

      // 将最小值,放在arr[0], 即交换
      if (minIndex != 2) {
         arr[minIndex] = arr[2];
         arr[2] = min;
      }

      System.out.println("第3轮后~~");
      System.out.println(Arrays.toString(arr));// 1, 34, 101, 119 */

     
      
   }

}

插入排序

插入式排序属于内部排序法,是对于欲排序的元素以插入的方式找寻该元素的适当位置,以达到排序的目的。

图解

在这里插入图片描述

代码
package com.atguigu.sort;

import java.text.SimpleDateFormat;
import java.util.Arrays;
import java.util.Date;

//author qij
public class InsertSort {

   public static void main(String[] args) {
      int[] arr = {101, 34, 119, 1, -1, 89};
      
      insertSort(arr); //调用插入排序算法
      
   }
   
   //插入排序
   public static void insertSort(int[] arr) {
      int insertVal = 0;
      int insertIndex = 0;
      //使用for循环来把代码简化
      for(int i = 1; i < arr.length; i++) {
         //定义待插入的数
         insertVal = arr[i];
         //定义这个数前面的下标
         insertIndex = i - 1;
   
         // 给insertVal 找到插入的位置
         // 说明
         // 1. insertIndex >= 0 保证在给insertVal 找插入位置,不越界
         // 2. insertVal < arr[insertIndex] 待插入的数,还没有找到插入位置
         // 3. 就需要将 arr[insertIndex] 后移
         while (insertIndex >= 0 && insertVal < arr[insertIndex]) {
            arr[insertIndex + 1] = arr[insertIndex];// arr[insertIndex]
            insertIndex--;
         }
         // 当退出while循环时,说明插入的位置找到, insertIndex + 1
         //这里我们判断是否需要赋值
         if(insertIndex + 1 != i) {
            arr[insertIndex + 1] = insertVal;
         }
   
         System.out.println("第"+i+"轮插入");
         System.out.println(Arrays.toString(arr));
      }
      
      
      /*
      
      
      //使用逐步推导的方式来讲解,便利理解
      //第1轮 {101, 34, 119, 1};  => {34, 101, 119, 1}
      
      
      //{101, 34, 119, 1}; => {101,101,119,1}
      //定义待插入的数
      int insertVal = arr[1];
      int insertIndex = 1 - 1; //即arr[1]的前面这个数的下标
      
      //给insertVal 找到插入的位置
      //说明
      //1. insertIndex >= 0 保证在给insertVal 找插入位置,不越界
      //2. insertVal < arr[insertIndex] 待插入的数,还没有找到插入位置
      //3. 就需要将 arr[insertIndex] 后移
      while(insertIndex >= 0 && insertVal < arr[insertIndex] ) {
         arr[insertIndex + 1] = arr[insertIndex];// arr[insertIndex]
         insertIndex--;
      }
      //当退出while循环时,说明插入的位置找到, insertIndex + 1
      //举例:理解不了,我们一会 debug
      arr[insertIndex + 1] = insertVal;
      
      System.out.println("第1轮插入");
      System.out.println(Arrays.toString(arr));
      
      //第2轮
      insertVal = arr[2];
      insertIndex = 2 - 1; 
      
      while(insertIndex >= 0 && insertVal < arr[insertIndex] ) {
         arr[insertIndex + 1] = arr[insertIndex];// arr[insertIndex]
         insertIndex--;
      }
      
      arr[insertIndex + 1] = insertVal;
      System.out.println("第2轮插入");
      System.out.println(Arrays.toString(arr));
      
      
      //第3轮
      insertVal = arr[3];
      insertIndex = 3 - 1;

      while (insertIndex >= 0 && insertVal < arr[insertIndex]) {
         arr[insertIndex + 1] = arr[insertIndex];// arr[insertIndex]
         insertIndex--;
      }

      arr[insertIndex + 1] = insertVal;
      System.out.println("第3轮插入");
      System.out.println(Arrays.toString(arr)); */
      
   }

}

希尔排序

希尔排序是希尔(Donald Shell)于1959年提出的一种排序算法。希尔排序也是一种插入排序,它是简单插入排序经过改进之后的一个更高效的版本,也称为缩小增量排序。

图解

希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止

在这里插入图片描述

代码
package com.atguigu.sort;

import java.text.SimpleDateFormat;
import java.util.Arrays;
import java.util.Date;

public class ShellSort {

   public static void main(String[] args) {
      int[] arr = { 8, 9, 1, 7, 2, 3, 5, 4, 6, 0 };
      
      shellSort(arr); //交换式
   }

   // 使用逐步推导的方式来编写希尔排序
   // 希尔排序时, 对有序序列在插入时采用交换法, 
   // 思路(算法) ===> 代码
   public static void shellSort(int[] arr) {
      
      int temp = 0;
      int count = 0;
      // 根据前面的逐步分析,使用循环处理
      for (int gap = arr.length / 2; gap > 0; gap /= 2) {
         for (int i = gap; i < arr.length; i++) {
            // 遍历各组中所有的元素(共gap组,每组有个元素), 步长gap
            for (int j = i - gap; j >= 0; j -= gap) {
               // 如果当前元素大于加上步长后的那个元素,说明交换
               if (arr[j] > arr[j + gap]) {
                  temp = arr[j];
                  arr[j] = arr[j + gap];
                  arr[j + gap] = temp;
               }
            }
         }
         System.out.println("希尔排序第" + (++count) + "轮 =" + Arrays.toString(arr));
      }
      
      /*
      
      // 希尔排序的第1轮排序
      // 因为第1轮排序,是将10个数据分成了 5组
      for (int i = 5; i < arr.length; i++) {
         // 遍历各组中所有的元素(共5组,每组有2个元素), 步长5
         for (int j = i - 5; j >= 0; j -= 5) {
            // 如果当前元素大于加上步长后的那个元素,说明交换
            if (arr[j] > arr[j + 5]) {
               temp = arr[j];
               arr[j] = arr[j + 5];
               arr[j + 5] = temp;
            }
         }
      }
      
      System.out.println("希尔排序1轮后=" + Arrays.toString(arr));//
      
      
      // 希尔排序的第2轮排序
      // 因为第2轮排序,是将10个数据分成了 5/2 = 2组
      for (int i = 2; i < arr.length; i++) {
         // 遍历各组中所有的元素(共5组,每组有2个元素), 步长5
         for (int j = i - 2; j >= 0; j -= 2) {
            // 如果当前元素大于加上步长后的那个元素,说明交换
            if (arr[j] > arr[j + 2]) {
               temp = arr[j];
               arr[j] = arr[j + 2];
               arr[j + 2] = temp;
            }
         }
      }

      System.out.println("希尔排序2轮后=" + Arrays.toString(arr));//

      // 希尔排序的第3轮排序
      // 因为第3轮排序,是将10个数据分成了 2/2 = 1组
      for (int i = 1; i < arr.length; i++) {
         // 遍历各组中所有的元素(共5组,每组有2个元素), 步长5
         for (int j = i - 1; j >= 0; j -= 1) {
            // 如果当前元素大于加上步长后的那个元素,说明交换
            if (arr[j] > arr[j + 1]) {
               temp = arr[j];
               arr[j] = arr[j + 1];
               arr[j + 1] = temp;
            }
         }
      }

      System.out.println("希尔排序3轮后=" + Arrays.toString(arr));//
      */
   }

}

快速排序

快速排序(Quicksort)是对冒泡排序的一种改进。基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。

图解

在这里插入图片描述

代码
package com.atguigu.sort;

import java.text.SimpleDateFormat;
import java.util.Arrays;
import java.util.Date;

//author qij
public class QuickSort {

   public static void main(String[] args) {
      int[] arr = {-9,78,0,23,-567,70, -1,900, 4561};

      quickSort(arr, 0, arr.length-1);

      System.out.println("arr=" + Arrays.toString(arr));
   }

   public static void quickSort(int[] arr,int left, int right) {
      int l = left; //左下标
      int r = right; //右下标
      //pivot 中轴值
      int pivot = arr[(left + right) / 2];
      int temp = 0; //临时变量,作为交换时使用
      //while循环的目的是让比pivot 值小放到左边
      //比pivot 值大放到右边
      while( l < r) { 
         //在pivot的左边一直找,找到大于等于pivot值,才退出
         while( arr[l] < pivot) {
            l += 1;
         }
         //在pivot的右边一直找,找到小于等于pivot值,才退出
         while(arr[r] > pivot) {
            r -= 1;
         }
         //如果l >= r说明pivot 的左右两的值,已经按照左边全部是
         //小于等于pivot值,右边全部是大于等于pivot值
         if( l >= r) {
            break;
         }
         
         //交换
         temp = arr[l];
         arr[l] = arr[r];
         arr[r] = temp;
         
         //如果交换完后,发现这个arr[l] == pivot值 相等 r--, 前移
         if(arr[l] == pivot) {
            r -= 1;
         }
         //如果交换完后,发现这个arr[r] == pivot值 相等 l++, 后移
         if(arr[r] == pivot) {
            l += 1;
         }
      }
      
      // 如果 l == r, 必须l++, r--, 否则为出现栈溢出
      if (l == r) {
         l += 1;
         r -= 1;
      }
      //向左递归
      if(left < r) {
         quickSort(arr, left, r);
      }
      //向右递归
      if(right > l) {
         quickSort(arr, l, right);
      }
      
      
   }
}

归并排序

归并排序(MERGE-SORT)是利用归并的思想实现的排序方法,该算法采用经典的分治(divide-and-conquer)策略(分治法将问题分(divide)成一些小的问题然后递归求解,而治(conquer)的阶段则将分的阶段得到的各答案"修补"在一起,即分而治之)。

图解

把当前数组根据中间值细分,分完之后呈现下面这种状态

在这里插入图片描述

先建立一个临时数组(temp),将两个已经有序的子序列合并成一个有序序列,最终合并替换原数组

在这里插入图片描述

代码
package com.atguigu.sort;

import java.util.Arrays;

public class MergetSort {

   public static void main(String[] args) {
      int arr[] = { 8, 4, 5, 7, 1, 3, 6, 2 };

      int temp[] = new int[arr.length]; //归并排序需要一个额外空间
      mergeSort(arr, 0, arr.length - 1, temp);

      System.out.println("归并排序后=" + Arrays.toString(arr));
      
      //测试快排的执行速度
      //创建要给800万个的随机的数组,耗时3s左右,可以说很快了
//    int[] arr = new int[8000000];
//    for (int i = 0; i < 8000000; i++) {
//       arr[i] = (int) (Math.random() * 8000000); // 生成一个[0, 8000000) 数
//    }
//    System.out.println("排序前");
//    Date data1 = new Date();
//    SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
//    String date1Str = simpleDateFormat.format(data1);
//    System.out.println("排序前的时间是=" + date1Str);
//
//    int temp[] = new int[arr.length]; //归并排序需要一个额外空间
//        mergeSort(arr, 0, arr.length - 1, temp);
//
//        Date data2 = new Date();
//    String date2Str = simpleDateFormat.format(data2);
//    System.out.println("排序前的时间是=" + date2Str);
   }
   
   
   /**
    * 分 + 合方法(主要是递归,先分再合)
    */
   public static void mergeSort(int[] arr, int left, int right, int[] temp) {
      if(left < right) {
         int mid = (left + right) / 2; //中间索引
         //向左递归进行分解、向右递归进行分解
         mergeSort(arr, left, mid, temp);
         mergeSort(arr, mid + 1, right, temp);
         //合并
         merge(arr, left, mid, right, temp);
      }
   }

   /**
    * 合并的方法
    * @param arr 排序的原始数组
    * @param left 左边有序序列的初始索引
    * @param mid 中间索引
    * @param right 右边索引
    * @param temp 做中转的数组
    */
   public static void merge(int[] arr, int left, int mid, int right, int[] temp) {

      //初始化i, 左边有序序列的初始索引
      int i = left;
      //初始化j, 右边有序序列的初始索引
      int j = mid + 1;
      //指向temp数组的当前索引
      int t = 0;
      
      //(一)
      //先把左右两边(有序)的数据按照规则填充到temp数组
      //直到左右两边的有序序列,有一边处理完毕为止(不论左边还是右边)
      while (i <= mid && j <= right) {
         //如果左边的有序序列的当前元素,小于等于右边有序序列的当前元素
         //即将左边的当前元素,填充到 temp数组 
         //然后 t++, i++
         if(arr[i] <= arr[j]) {
            temp[t] = arr[i];
            t += 1;
            i += 1;
         } else {
            //反之,右边也一样
            temp[t] = arr[j];
            t += 1;
            j += 1;
         }
      }
      
      //(二)
      //因为本来就是有序的数组,把有剩余数据的一边的数据依次全部填充到temp
      while( i <= mid) {
         temp[t] = arr[i];
         t += 1;
         i += 1;    
      }
      
      while( j <= right) {
         temp[t] = arr[j];
         t += 1;
         j += 1;    
      }

      //(三)
      //将temp数组的元素拷贝到arr
      //注意,并不是每次都拷贝所有
      t = 0;
      int tempLeft = left;
      //第一次合并 tempLeft = 0 , right = 1 //  tempLeft = 2  right = 3 // tL=0 ri=3
      //最后一次 tempLeft = 0  right = 7
      while(tempLeft <= right) { 
         arr[tempLeft] = temp[t];
         t += 1;
         tempLeft += 1;
      }
      
   }

}

基尔排序

基于桶排序的一种扩展算法

基数排序(radix sort)属于“分配式排序”(distribution sort),又称“桶子法”(bucket sort)。顾名思义,它是通过键值的各个位的值,将要排序的元素分配至某些“桶”中,达到排序的作用

  • 基数排序法是属于稳定性的排序,基数排序法的是效率高的稳定性排序法
  • 基数排序(Radix Sort)是桶排序的扩展
  • 基数排序是1887年赫尔曼·何乐礼发明的。它是这样实现的:将整数按位数切割成不同的数字,然后按每个位数分别比较。
图解

将数组 {53, 3, 542, 748, 14, 214} 使用基数排序, 进行升序排序

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

代码

注意:

  • 基数排序是对传统桶排序的扩展,速度很快.
  • 基数排序是经典的空间换时间的方式,占用内存很大, 当对海量数据排序时,容易造成 OutOfMemoryError 。
package com.atguigu.sort;

import java.text.SimpleDateFormat;
import java.util.Arrays;
import java.util.Date;

public class RadixSort {

   public static void main(String[] args) {
      int arr[] = { 53, 3, 542, 748, 14, 214};

      radixSort(arr);
      
      // 80000000 * 11 * 4 / 1024 / 1024 / 1024 =3.3G 
//    int[] arr = new int[8000000];
//    for (int i = 0; i < 8000000; i++) {
//       arr[i] = (int) (Math.random() * 8000000); // 生成一个[0, 8000000) 数
//    }
//    System.out.println("排序前");
//    Date data1 = new Date();
//    SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
//    String date1Str = simpleDateFormat.format(data1);
//    System.out.println("排序前的时间是=" + date1Str);
//
//    radixSort(arr);
//
//    Date data2 = new Date();
//    String date2Str = simpleDateFormat.format(data2);
//    System.out.println("排序前的时间是=" + date2Str);
//
//    System.out.println("基数排序后 " + Arrays.toString(arr));
      
   }

   //基数排序方法
   public static void radixSort(int[] arr) {
      
      //根据前面的推导过程,我们可以得到最终的基数排序代码
      //得到数组中最大的数的位数
      int max = arr[0]; //假设第一数就是最大数
      for(int i = 1; i < arr.length; i++) {
         if (arr[i] > max) {
            max = arr[i];
         }
      }
      //得到最大数是几位数
      //上面例子,748为三位数,所以maxLength = 3
      int maxLength = (max + "").length();

      //定义一个二维数组,表示10个桶, 每个桶就是一个一维数组
      //1. 二维数组包含10个一维数组
      //2. 为了防止在放入数的时候,数据溢出,则每个一维数组(桶),大小定为arr.length
      int[][] bucket = new int[10][arr.length];
      
      //为了记录每个桶中存放的实际数据个数
      //比如:bucketElementCounts[0],记录的就是  bucket[0] 桶的放入数据个数
      int[] bucketElementCounts = new int[10];
      
      //这里我们使用循环将代码处理
      for(int i = 0 , n = 1; i < maxLength; i++, n *= 10) {
         //(针对每个元素的对应位进行排序处理), 第一次是个位,第二次是十位,第三次是百位..
         for(int j = 0; j < arr.length; j++) {
            //取出每个元素的对应位的值(详细见下面注释代码)
            int digitOfElement = arr[j] / n % 10;
            //放入到对应的桶中
            bucket[digitOfElement][bucketElementCounts[digitOfElement]] = arr[j];
            bucketElementCounts[digitOfElement]++;
         }
         //按照这个桶的顺序(一维数组的下标依次取出数据,放入原来数组)
         int index = 0;
         //遍历每一桶,并将桶中是数据,放入到原数组
         for(int k = 0; k < bucketElementCounts.length; k++) {
            //如果桶中,有数据,我们才放入到原数组
            if(bucketElementCounts[k] != 0) {
               //循环该桶即第k个桶(即第k个一维数组), 放入
               for(int l = 0; l < bucketElementCounts[k]; l++) {
                  //取出元素放入到arr
                  arr[index++] = bucket[k][l];
               }
            }
            //还原每个桶数据个数,方便下次循环使用
            bucketElementCounts[k] = 0;
            
         }
         System.out.println("第"+(i+1)+"轮,对个位的排序处理 arr =" + Arrays.toString(arr));
      }
      
      /*
      
      //第1轮(针对每个元素的个位进行排序处理)
      for(int j = 0; j < arr.length; j++) {
         //取出每个元素的个位的值
         int digitOfElement = arr[j] / 1 % 10;
         //放入到对应的桶中
         bucket[digitOfElement][bucketElementCounts[digitOfElement]] = arr[j];
         bucketElementCounts[digitOfElement]++;
      }
      //按照这个桶的顺序(一维数组的下标依次取出数据,放入原来数组)
      int index = 0;
      //遍历每一桶,并将桶中是数据,放入到原数组
      for(int k = 0; k < bucketElementCounts.length; k++) {
         //如果桶中,有数据,我们才放入到原数组
         if(bucketElementCounts[k] != 0) {
            //循环该桶即第k个桶(即第k个一维数组), 放入
            for(int l = 0; l < bucketElementCounts[k]; l++) {
               //取出元素放入到arr
               arr[index++] = bucket[k][l];
            }
         }
         //第l轮处理后,需要将每个 bucketElementCounts[k] = 0 !!!!
         bucketElementCounts[k] = 0;
         
      }
      System.out.println("第1轮,对个位的排序处理 arr =" + Arrays.toString(arr));
      
      
      //==========================================
      
      //第2轮(针对每个元素的十位进行排序处理)
      for (int j = 0; j < arr.length; j++) {
         // 取出每个元素的十位的值
         int digitOfElement = arr[j] / 10  % 10; //748 / 10 => 74 % 10 => 4
         // 放入到对应的桶中
         bucket[digitOfElement][bucketElementCounts[digitOfElement]] = arr[j];
         bucketElementCounts[digitOfElement]++;
      }
      // 按照这个桶的顺序(一维数组的下标依次取出数据,放入原来数组)
      index = 0;
      // 遍历每一桶,并将桶中是数据,放入到原数组
      for (int k = 0; k < bucketElementCounts.length; k++) {
         // 如果桶中,有数据,我们才放入到原数组
         if (bucketElementCounts[k] != 0) {
            // 循环该桶即第k个桶(即第k个一维数组), 放入
            for (int l = 0; l < bucketElementCounts[k]; l++) {
               // 取出元素放入到arr
               arr[index++] = bucket[k][l];
            }
         }
         //第2轮处理后,需要将每个 bucketElementCounts[k] = 0 !!!!
         bucketElementCounts[k] = 0;
      }
      System.out.println("第2轮,对个位的排序处理 arr =" + Arrays.toString(arr));
      
      
      //第3轮(针对每个元素的百位进行排序处理)
      for (int j = 0; j < arr.length; j++) {
         // 取出每个元素的百位的值
         int digitOfElement = arr[j] / 100 % 10; // 748 / 100 => 7 % 10 = 7
         // 放入到对应的桶中
         bucket[digitOfElement][bucketElementCounts[digitOfElement]] = arr[j];
         bucketElementCounts[digitOfElement]++;
      }
      // 按照这个桶的顺序(一维数组的下标依次取出数据,放入原来数组)
      index = 0;
      // 遍历每一桶,并将桶中是数据,放入到原数组
      for (int k = 0; k < bucketElementCounts.length; k++) {
         // 如果桶中,有数据,我们才放入到原数组
         if (bucketElementCounts[k] != 0) {
            // 循环该桶即第k个桶(即第k个一维数组), 放入
            for (int l = 0; l < bucketElementCounts[k]; l++) {
               // 取出元素放入到arr
               arr[index++] = bucket[k][l];
            }
         }
         //第3轮处理后,需要将每个 bucketElementCounts[k] = 0 !!!!
         bucketElementCounts[k] = 0;
      }
      System.out.println("第3轮,对个位的排序处理 arr =" + Arrays.toString(arr)); */
      
   }
}

其中,bucket 和 bucketElementCounts 数据调试如下图:

在这里插入图片描述

在这里插入图片描述

算法复杂度

相关术语解释:

  • 稳定:如果a原本在b前面,而a=b,排序之后a仍然在b的前面;
  • 不稳定:如果a原本在b的前面,而a=b,排序之后a可能会出现在b的后面;
  • 内排序:所有排序操作都在内存中完成;
  • 外排序:由于数据太大,因此把数据放在磁盘中,而排序通过磁盘和内存的数据传输才能进行;
  • 时间复杂度: 一个算法执行所耗费的时间。
  • 空间复杂度:运行完一个程序所需内存的大小。
  • n: 数据规模
  • k: “桶”的个数
  • In-place: 不占用额外内存
  • Out-place: 占用额外内存

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值