生日悖论问题
什么是生日悖论问题
假定每个人的生日是等概率的,在不考虑闰年的情况下每年有365天。在k个人中至少有两个人的生日相同的概率大于1/2,问k的最小值是多少?
生日悖论问题求解
把每个人的生日看成在[1,365]中的随机变量,由组合基本知识得知k个人的生日不相同的概率为:
设k个人的生日至少有一个相同的概率为P(k)。
当k = 23时,pk ≈ 0.4927,从而P(23) = 1-pk ≈ 0.5073 > 0.5
我们将k的值设置为100,此时,P(100) = 1- pk ≈ 0.9999997,即该事件几乎必然发生。
下表为k取不同值时P(k)的值。
k | P(k) |
---|---|
10 | 0.1169 |
23 | 0.5073 |
30 | 0.7063 |
40 | 0.8912 |
50 | 0.9704 |
60 | 0.9941 |
100 | 0.9999 |
&