关于tensorflow 框架中tf.keras.datasets.imdb.load_data()函数一些问题

tf.keras.datasets.imdb.load_data()

在这里插入图片描述

skip_top 参数

跳过最频繁出现的前N个词(可能没有信息),这些词将作为ov_char值出现在数据集中,默认为0,所以没有词被跳过。

oov_char 参数

int. 词汇外的字符,由于num_words或skip_top限制而被剔除的词将被这个字符所取代。

index_from 参数

int,指数为该指数及以上的实际词语。

start_char 参数

int. 一个序列的开始将被标记为这个字符,默认为1,因为0通常是填充字符。(这也是为什么当index_from=3时,开头1不加3的原因)

oov_char默认为2,start_char默认为1时

index_from=3 和 index_from=0的不同:
在这里插入图片描述
坑了我好久,淦!!!!我真是闲着没事干了要搞懂这个,焯!!!!

boston_housing module: Boston housing price regression dataset. cifar10 module: CIFAR10 small images classification dataset. cifar100 module: CIFAR100 small images classification dataset. fashion_mnist module: Fashion-MNIST dataset. imdb module: IMDB sentiment classification dataset. mnist module: MNIST handwritten digits dataset. reuters module: Reuters topic classification dataset. import tensorflow as tf from tensorflow import keras fashion_mnist = keras.datasets.fashion_mnist (x_train, y_train), (x_test, y_test) = fashion_mnist.load_data() mnist = keras.datasets.mnist (x_train, y_train), (x_test, y_test) = mnist.load_data() cifar100 = keras.datasets.cifar100 (x_train, y_train), (x_test, y_test) = cifar100.load_data() cifar10 = keras.datasets.cifar10 (x_train, y_train), (x_test, y_test) = cifar10.load_data() imdb = keras.datasets.imdb (x_train, y_train), (x_test, y_test) = imdb.load_data() # word_index is a dictionary mapping words to an integer index word_index = imdb.get_word_index() # We reverse it, mapping integer indices to words reverse_word_index = dict([(value, key) for (key, value) in word_index.items()]) # We decode the review; note that our indices were offset by 3 # because 0, 1 and 2 are reserved indices for "padding", "start of sequence", and "unknown". decoded_review = ' '.join([reverse_word_index.get(i - 3, '?') for i in x_train[0]]) print(decoded_review) boston_housing = keras.datasets.boston_housing (x_train, y_train), (x_test, y_test) = boston_housing.load_data() reuters= keras.datasets.reuters (x_train, y_train), (x_test, y_test) = reuters.load_data() tf.keras.datasets.reuters.get_word_index( path='reuters_word_index.json' )
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值