激光光束传输与谐振腔仿真ABCDRez


代码包下载地址:

https://ww2.mathworks.cn/matlabcentral/fileexchange/169856-laser-beam-propagation-and-resonator-simulation-abcdrez?s_tid=ta_fx_results


https://download.csdn.net/download/qq_42712244/89533054


 

第一部分 说明

现阶段用于激光谐振腔的仿真软件多种多样,但大多已是集合而成,用户无法了解其详细内容。

 

本代码包ABCDRez是基于MATLAB语言的激光高斯光束传输(Laser Gaussian  Beam Propagation)及激光谐振腔仿真(Laser Resonator Simulation)代码包。文章使用高斯光束描述激光,简单介绍了热效应(Thermal Effect)、腔内非线性变换(Nonlinear Frequency Transformation),主要介绍了光束的调节与匹配(Beam Adjusting and Matching)、驻波谐振腔(Standing Stable Resonator)、行波谐振腔(Traveling Stable Resonator)相关内容。用接近数学表达式的自然化语言,使用户更易学习、掌握及灵活运用。


其核心内容可以参见吕百达教授著《激光光学 光束描述、传输变换与光腔技术物理》、reZonator软件官网、羊国光教授等著《高等物理光学》、李港教授著《激光频率的变换与扩展》、Walter Koechner著《固体激光工程》等。

 


第二部分 基础

2.1 高斯光束

2.1.1 高斯光束的推导

 

设沿坐标z方向传播的细光束,在不计介质损耗的情况下,其光波的复振幅可以近似表达为
 eq?u%28x%2Cy%2Cz%29%3DU%28x%2Cy%2Cz%29e%5E%7B-jkz%7D···(式2.1.1.1)


式中k为传播常数(即波矢量的值),eq?e%5E%7B-jkz%7D表示沿坐标z方向迅速变化的相位项,U则为坐标z的缓慢变化的函数,代入亥姆霍兹方程,得到U满足的标量方程
eq?%5B%28%5Cfrac%7B%5Cpartial%5E2%20U%7D%7B%5Cpartial%20x%5E2%7D+%5Cfrac%7B%5Cpartial%5E2%20U%7D%7B%5Cpartial%20y%5E2%7D+%5Cfrac%7B%5Cpartial%5E2%20U%7D%7B%5Cpartial%20z%5E2%7D%29-2jk%5Cfrac%7B%5Cpartial%20U%7D%7B%5Cpartial%20z%7D%5De%5E%7B-jkz%7D%3D0···(式2.1.1.2)


在振幅慢变化近似下,可略去关于z的二阶导数eq?%5Cfrac%7B%5Cpartial%5E2%20U%7D%7B%5Cpartial%20z%5E2%7D,得
eq?%5Cfrac%7B%5Cpartial%5E2%20U%7D%7B%5Cpartial%20x%5E2%7D+%5Cfrac%7B%5Cpartial%5E2%20U%7D%7B%5Cpartial%20y%5E2%7D-2jk%5Cfrac%7B%5Cpartial%20U%7D%7B%5Cpartial%20z%7D%3D0······(式2.1.1.3)


只考虑旋转对称系统,令矢径eq?r%3D%5Csqrt%7Bx%5E2+y%5E2%7D。设近轴亥姆霍兹的慢变化、细光束解具有如下形式
eq?U%28x%2Cy%2Cz%29%3Dexp%5Cleft%20%5C%7B%20-j%5BP%28z%29+%5Ctfrac%7Bk%7D%7B2q%28z%29%7Dr%5E2%5D%20%5Cright%20%5C%7D···(式2.1.1.4)


式中P(z)称为相移参数,q(z)称为光束参数,代入式2.1.1.3,得到
eq?%5Cfrac%7B%5Cpartial%20U%7D%7B%5Cpartial%20%5Cxi%20%7D%3D-j%5Ctfrac%7Bk%7D%7B2q%28z%29%7Dexp%5Cleft%20%5C%7B%20-j%5BP%28z%29+%5Ctfrac%7Bk%7D%7B2q%28z%29%7Dr%5E2%5D%20%5Cright%20%5C%7D%5Ccdot%202%5Cxi ··(式2.1.1.5)


式中eq?%5Cxi表示x或y,
eq?%5Cfrac%7B%5Cpartial%5E2%20U%7D%7B%5Cpartial%20x%5E2%7D+%5Cfrac%7B%5Cpartial%5E2%20U%7D%7B%5Cpartial%20y%5E2%7D%3D-j%5Ctfrac%7Bk%7D%7B2q%28z%29%7Dexp%5Cleft%20%5C%7B%20-j%5BP%28z%29+%5Ctfrac%7Bk%7D%7B2q%28z%29%7Dr%5E2%5D%20%5Cright%20%5C%7D%20-j%20%5Ctfrac%20%7Bk%5E2%7D%7B4q%5E2%28z%29%7Dexp%5Cleft%20%5C%7B%20-j%5BP%28z%29+%5Ctfrac%7Bk%7D%7B2q%28z%29%7Dr%5E2%5D%20%5Cright%20%5C%7D%5Ccdot%204r%5E2······(式2.1.1.6)

 

eq?%5Cfrac%7B%5Cpartial%20U%7D%7B%5Cpartial%20z%7D%3Dexp%5Cleft%20%5C%7B%20-j%5BP%28z%29+%5Ctfrac%7Bk%7D%7B2q%28z%29%7Dr%5E2%5D%20%5Cright%20%5C%7D%5Ccdot%20%5B-j%28%5Cfrac%7BdP%7D%7Bdz%7D-%5Cfrac%7Bk%7D%7B2q%5E2%7D%5Cfrac%7Bdq%7D%7Bdz%7Dr%5E2%29%5D······(式2.1.1.7)


以式2.1.1.6、式2.1.1.7代入式2.1.1.3,得到
eq?-2k%28%5Cfrac%7BdP%7D%7Bdz%7D+%5Cfrac%7Bj%7D%7Bq%7D%29-%28%5Cfrac%7Bk%5E2%7D%7Bq%5E2%7D%5Cfrac%7Bdq%7D%7Bdz%7D%29%5Ccdot%20r%5E2%3D0··(式2.1.1.8)


上式对所有的r成立,这要求式2.1.1.8左边关于r级数的各次幂的系数均为0,即
     eq?%5Cfrac%7Bdq%7D%7Bdz%7D%3D1······(式2.1.1.9)
以及
    eq?%5Cfrac%7BdP%7D%7Bdz%7D%3D-%5Cfrac%7Bj%7D%7Bq%7D  ······(式2.1.1.10)


式2.1.1.9的解为
   eq?q%3Dq_0%3Dz  ······(式2.1.1.11)


式中为待定常数。将式2.1.1.11代入式2.1.1.10,得到
eq?P%28z%29%3D-j%5Bln%28z+q_0%29%5D+%28%5Ctheta%20+jlnq_0%29···(式2.1.1.12)


把积分常数表示为eq?%5Ctheta%20+jlnq_0,是为了方便处理。进一步将式2.1.1.9的解写成如下形式
eq?%5Cfrac%7B1%7D%7Bq%28z%29%7D%3D%5Cfrac%7B1%7D%7BR%28z%29%7D-j%5Cfrac%7B%5Clambda%7D%7B%5Cpi%20w%5E2%28z%29%7D······(式2.1.1.13)


其中R(z)和w(z)是z的实函数,这样就可以u(z)把表示为

eq?U%28z%29%3Dexp%5Cleft%20%5C%7B%20-j%5Bkz+P%28z%29+%5Ctfrac%7Bkr%5E2%7D%7B2%7D%28%5Cfrac%7B1%7D%7BR%28z%29%7D-j%5Cfrac%7B%5Clambda%7D%7B%5Cpi%20w%5E2%28z%29%7D%29%5D%20%5Cright%20%5C%7D%3De%5E%7B-j%5Ctheta%7D%20exp%5Cleft%20%5C%7B%20-j%5Bkz-jln%281+%5Cfrac%7Bz%7D%7Bq_0%7D%29+%5Ctfrac%7Bkr%5E2%7D%7B2%7D%28%5Cfrac%7B1%7D%7BR%28z%29%7D-j%5Cfrac%7B%5Clambda%7D%7B%5Cpi%20w%5E2%28z%29%7D%29%5D%20%5Cright%20%5C%7D······(式2.1.1.14)


eq?e%5E%7B-j%5Ctheta%7D表示常数相位,可取为1eq?%28%5Ctheta%3D0%29,式2.1.1.14成为

eq?U%28z%29%3Dexp%5Cleft%20%5C%7B%20-j%5Bkz-jln%281+%5Cfrac%7Bz%7D%7Bq_0%7D%29+%5Ctfrac%7Bkr%5E2%7D%7B2%7D%28%5Cfrac%7B1%7D%7BR%28z%29%7D-j%5Cfrac%7B%5Clambda%7D%7B%5Cpi%20w%5E2%28z%29%7D%29%5D%20%5Cright%20%5C%7D······(式2.1.1.15)


指数函数中括号内的实数部分对应的是相位:
eq?%5CPhi%20%28z%29%3D%20kz+%5Ctfrac%7Bkr%5E2%7D%7B2R%28z%29%7D%20+Re%5B-jln%281+%5Cfrac%7Bz%7D%7Bq_0%7D%29%5D···(式2.1.1.16)


符号表示取实部。当eq?R%3D%5Cinfty时,在与z轴正交的平面上相位函数为常数,光束的波面为平面。我们选择该平面的坐标z=0,称为“光腰”,此处参数为
   eq?%5Cfrac%20%7B1%7D%7Bq_0%7D%3D-j%5Cfrac%20%7B%5Clambda%7D%7B%5Cpi%20w_%7B0%7D%5E%7B2%7D%7D  ······(式2.1.1.17)


其中eq?w_0%3Dw%280%29为光腰尺寸。代入式2.1.1.11得到
    eq?q%3D-j%5Cfrac%7B%5Cpi%20w_%7B0%7D%5E%7B2%7D%7D%7B%5Clambda%7D+z······(式2.1.1.18)


将式2.1.1.18代入式2.1.1.13,令等式两边的实部和虚部分别相等,得到
eq?R%28z%29%3Dz%5B1+%28%5Cfrac%7B%5Cpi%20w_0%5E2%7D%7B%5Clambda%20z%7D%29%5E2%5D······(式2.1.1.19)

eq?w%5E2%28z%29%3Dw_0%5E2%5B1+%28%5Cfrac%7B%5Clambda%20z%7D%7B%5Cpi%20w_0%5E2%7D%29%5E2%5D······(式2.1.1.20)
式2.1.1.19为波面半径,式2.1.1.20为光束尺寸。


此外,将式2.1.1.17代入式2.1.1.12得到

eq?P%20%28z%29%3D%20-j%20ln%281+%5Cfrac%7Bz%7D%7Bq_0%7D%29%3D-j%20ln%281-j%5Cfrac%7B%5Clambda%20z%7D%7B%5Cpi%20w_0%5E2%7D%29%3D-j%20ln%5B%5Cfrac%7Bw%28z%29%7D%7Bw_0%7D%5D-%5Cphi%20%28z%29······(式2.1.1.21)
的实部为
eq?%5Cphi%28z%29%3Darctan%28%5Cfrac%7B%5Clambda%20z%7D%7B%5Cpi%20w_0%5E2%7D%29······(式2.1.1.22)


将其代入式2.1.1.13,得到
eq?%5CPhi%28z%29%3Dkz+%5Cfrac%7Bkr%5E2%7D%7B2R%28z%29%7D-%5Cphi%28z%29······(式2.1.1.23)
的虚部对式2.1.1.13的贡献为
eq?exp%5Cleft%20%5C%7B%20-ln%5B%5Cfrac%7Bw%28z%29%7D%7Bw_0%7D%5D%20%5Cright%20%5C%7D%3D%5Cfrac%7Bw_0%7D%7Bw%28z%29%7D······(式2.1.1.24)


最终得到

eq?u%28z%29%3D%5Cfrac%7Bw_0%7D%7Bw%28z%29%7Dexp%5B-%5Cfrac%7Br%5E2%7D%7Bw%5E2%28z%29%7D%5Dexp%5B-jkz-jk%5Cfrac%7Br%5E2%7D%7B2R%28z%29%7D+j%5Cphi%5D······(式2.1.1.25)
式2.1.1.25即为高斯光束基模的表达式。


2.1.2 高斯光束的查看

2.1.2.1 高阶与低阶高斯光束轮廓

高斯光束的三个重要参量,束宽、等相位面曲率半径、相位因子可分别由以下三式描述:
eq?w%5E2%28z%29%3Dw_0%5E2+%5Ctheta_0%5E2%20%5Ccdot%20%28z-L_0%29%5E2······(式2.1.2.1)
eq?R%28z%29%3Dz+%5Cfrac%7Bz_0%5E2%7D%7Bz%7D       ······(式2.1.2.2)
eq?%5CPsi%20%3Dtan%5E-1%7B%5Cfrac%7Bz%7D%7Bz_0%7D%7D     ······(式2.1.2.3)


其中,Z0为瑞利长度,其为
eq?Z_0%3D%5Cfrac%7Bw_0%7D%7B%5Ctheta_0%7D      ······(式2.1.2.4)


定义光束传播比(或称光束质量因子)为
eq?M%5E2%3Dw_0%20%5Ctheta_0%5Cfrac%7B%5Cpi%20n%20%7D%7B%5Clambda%7D    ······(式2.1.2.5)


其中n为光束所在空间的折射率。
使用嵌入式高斯光束描述高阶高斯光束,调用函数wzplot查看。

858e2ec5ccca4605a06c6cc835832db2.png

wzplot(w02m,theta02m,L02m,lambda,A,B)
图2.1.2.1 高阶高斯光束束宽随距离分布


2.1.2.2 基模高斯光束的查看


基模高斯光束的电场强度可以表示为,

eq?E%28r%2Cz%29%3D%5Cfrac%7BA_0%20w_0%7D%7Bw%28z%29%7Dexp%5B-%5Cfrac%7Br%5E2%7D%7Bw%5E2%28z%29%7D%5Dexp%5Cleft%20%5C%7B%20-i%20%5Cleft%20%5C%7B%20k%5B%5Cfrac%7Br%5E2%7D%7B2R%28z%29%7D%5D-%5CPsi%20%5Cright%20%5C%7D%20%5Cright%20%5C%7D······(式2.1.2.6)


方便起见,取eq?A_0%3D1。又
eq?I%3DE%20%5Ccdot%20E%5E*   ······(式2.1.2.7)


而拉盖尔高斯光束的电场强度为

eq?E_pl%28r%2C%5Cvarphi%20%2Cz%29%3D%5Cfrac%7BA_%7Bpl%7D%20w_0%7D%7Bw%7D%20%28%5Csqrt%7B2%7D%5Cfrac%7Br%7D%7Bw%7D%29%5El%20%5Ccdot%20L_p%5El%282%5Cfrac%7Br%5E2%7D%7Bw%5E2%7D%29%20%5Ccdot%20exp%28-%5Cfrac%7Br%5E2%7D%7Bw%5E2%7D%29%20%5Ccdot%20exp%5Cleft%20%5C%7B%20-i%5Bk%29%28z+%5Cfrac%7Br%5E2%7D%7B2R%7D%29-%282p+l+1%29%20tan%5E%7B-1%7D%5Cfrac%7Bz%7D%7Bz_0%7D%5D%20%5Cright%20%5C%7D······(式2.1.2.8)


在柱坐标系中,电场强度与eq?%5Cvarphi无关,同样取eq?A_%7Bpl%7D%3D1。当且时,式2.1.2.8退化为基模高斯光束的电场强度(式2.1.2.6)。


由此可以查看基模高斯光束的光强及位相随距离的分布。

54d8e73894344db5bba284c12f06f876.png

(a) 不同位置的光强

b500843b5e2c4319b56f40119faa156d.png

(b) 不同位置的光强分布

b63847392a21464daa04a5a961c4369f.png

(c) 不同位置与中心的相位差

6455e0e33d3a4cb286ddf0b37d5b3dcd.png

(d) 不同位置与中心的相位差分布

[XX,YY,Eplrphiz,Phizz]=LGbeam(w02m,theta02m,L02m,lambda,getz,p,l,num)
[Eplrphiz,Phizz]=LGbeamr(w02m,theta02m,L02m, lambda,getz,p,l, r,phir)
图2.1.1.2   基模高斯光束的光强及位相随距离的分布


2.1.2.3 拉盖尔高斯光束与厄米高斯光束的查看


a. 拉盖尔高斯光束
eq?p%5Cneq%200eq?l%20%5Cneq%200时,光束为高阶的拉盖尔高斯光束。其电场强度eq?E_%7Bpl%7D%28r%2C%5Cvarphi%2Cz%29如式2.1.2.8所示。同理使用LGbeam或LGbeamr函数可以得到拉盖尔高斯光束的光强分布。

e380a40b904946808eb17f867b41bd44.png

[XX,YY,Eplrphiz,Phizz]=LGbeam(w02m,theta02m,L02m,lambda,getz,p,l,num)
图2.1.1.3   高阶的拉盖尔高斯光束的光腰处的光强分布


b. 厄米高斯光束
厄米高斯光束的电场强度为

eq?E_%7Bmn%7D%28x%2Cy%2Cz%29%3DA%28x%2Cy%2Cz%29exp%28-ikz%29%3D%5Cfrac%7BA_%7Bmn%7Dw_0%7D%7Bw%7D%20H_m%28%5Csqrt%7B2%7D%20%5Cfrac%7Bx%7D%7Bw%7D%29%20H_n%28%5Csqrt%7B2%7D%20%5Cfrac%7By%7D%7Bw%7D%29%20%5Ccdot%20exp%28-%5Cfrac%7Bx%5E2+y%5E2%7D%7Bw%5E2%7D%29%20%5Ccdot%20exp%5Cleft%20%5C%7B%20-i%5Bk%28z+%5Cfrac%7Bx%5E2+y%5E2%7D%7B2R%7D%29%5D%20%5Cright%20%5C%7D······(式2.1.2.9)


使用HGbeam函数可以得到厄米高斯光束的光强分布。

83984a178fb44635841ca027214e1cd7.png
[XX,YY,Eplrphiz,Phizz]=HGbeam(w02m,theta02m,L02m,lambda,getz,m,n,num)
图2.1.1.2   高阶的厄米高斯光束的光腰处的光强分布

2.1.3 基础传输矩阵

 

2.1.3.1 常用光学矩阵

01

距离为l的自由空间n=1

 

094de80e516548769a191a7fdd0da6ec.pngeq?%5Cbegin%7Bpmatrix%7D%201%20%26l%20%5C%5C%200%261%20%5Cend%7Bpmatrix%7D

02

界面折射

(折射率分别为

n1、n2

 

5a0225db3efc4999bcc052b87bf9f855.pngeq?%5Cbegin%7Bpmatrix%7D%201%20%260%20%5C%5C%200%26%5Cfrac%7Bn_1%7D%7Bn_2%7D%20%5Cend%7Bpmatrix%7D

03

折射率n、长l的均匀介质

58a8d52bd4e44793bca0267bb1b40f1e.pngeq?%5Cbegin%7Bpmatrix%7D%201%20%26%5Cfrac%7Bl%7D%7Bn%7D%20%5C%5C%200%261%20%5Cend%7Bpmatrix%7D

 

薄透镜(焦距f

74ef76704f3045fbb9f4cc2271e0c78c.pngeq?%5Cbegin%7Bpmatrix%7D%201%20%260%20%5C%5C%20-%5Cfrac%7B1%7D%7Bf%7D%261%20%5Cend%7Bpmatrix%7D

5

球面反射镜(曲率半径 eq?%5Crho

 

dc888e9123e74facb3c26089eb014ae6.pngeq?%5Cbegin%7Bpmatrix%7D%201%20%260%20%5C%5C%20-%5Cfrac%7B2%7D%7B%5Crho%7D%261%20%5Cend%7Bpmatrix%7D

6

球面折射

0656da2c4b9b4d7e90b0bdcde1424e31.pngn2%20%5Cend%7Bpmatrix%7D

07

厚透镜

d58fe965c44d423eb62ff3ac8f672711.pngeq?%5Cbegin%7Bpmatrix%7D%201-%5Cfrac%7Bh_2%7D%7Bf%7D%20%26h_1+h_2-%5Cfrac%7Bh_a%20h_2%7D%7Bf%7D%20%5C%5C%20-%5Cfrac%7B1%7D%7Bf%7D%261-%5Cfrac%7Bh_1%7D%7Bf%7D%20%5Cend%7Bpmatrix%7D

08

平面反射

9aa67dfd65574d5a9853e46a4f9fe3c1.pngeq?%5Cbegin%7Bpmatrix%7D%201%20%260%20%5C%5C%200%261%20%5Cend%7Bpmatrix%7D

09

调焦望远镜

379164c872804e0ab2a91b80fb101403.png

eq?%5Cbegin%7Bpmatrix%7D%20M_T%20%260%20%5C%5C%200%26%5Cfrac%7B1%7D%7BM_T%7D%20%5Cend%7Bpmatrix%7D

eq?M_T%3D-%5Cfrac%7Bf_2%7D%7Bf_1%7D

10

离焦望远镜

2d6ef55dc8344599aeee5e368f21da5b.png

eq?%5Cbegin%7Bpmatrix%7D%20M_T+%5Cfrac%7B%5CDelta%7D%7Bf_1%7D%20%26l%20%5C%5C%20-%5Cfrac%7B%5CDelta%7D%7Bf_1%20f_2%7D%26%5Cfrac%7B1%7D%7BM_T%7D+%5Cfrac%7B%5CDelta%7D%7Bf_2%7D%20%5Cend%7Bpmatrix%7D

     
*见脚本文件ABCDM.m


2.1.3.2 晶体近似


1. 薄透镜
将晶体视为薄透镜,由实验测得其焦距为f,那么晶体的传输矩阵为
eq?M_f%3D%5Cbegin%7Bpmatrix%7D%201%260%20%5C%5C%20-%5Cfrac%7B1%7D%7Bf%7D%261%20%5Cend%7Bpmatrix%7D   ······(式2.1.3.1)


2. 厚透镜
将晶体视为双凸厚透镜。设厚透镜主距为、,焦距为,则有

eq?M_%7Bf1%7D%3D%5Cbegin%7Bpmatrix%7D%201%20%26h_2%20%5C%5C%200%261%20%5Cend%7Bpmatrix%7D%20%5Cbegin%7Bpmatrix%7D%201%20%260%20%5C%5C%20-%5Cfrac%7B1%7D%7Bf%7D%261%20%5Cend%7Bpmatrix%7D%20%5Cbegin%7Bpmatrix%7D%201%20%26h_1%20%5C%5C%200%26%201%20%5Cend%7Bpmatrix%7D%20%3D%20%5Cbegin%7Bpmatrix%7D%201-%5Cfrac%7Bh_2%7D%7Bf%7D%20%26h_1+h_2-%5Cfrac%7Bh_a%20h_2%7D%7Bf%7D%20%5C%5C%20-%5Cfrac%7B1%7D%7Bf%7D%261-%5Cfrac%7Bh_1%7D%7Bf%7D%20%5Cend%7Bpmatrix%7D······(式2.1.3.2)
实际工作中常取h1=h2。


另一方面,设厚透镜两端面曲率半径分别为eq?%5Crho_1eq?%5Crho_2,几何厚度l,折射率eq?n_2的介质构成,并置于折射率为的介质中(如图2.1.3.1所示),则变换矩阵为

db52002fc2d14abe8bdb1d38134a229b.png

图2.1.3.1   厚透镜示意图

eq?M_%7Bf2%7D%3DM_%7BBack%7D%20%5Ccdot%20M_%7BMedium%7D%20%5Ccdot%20M_%7BFront%7D%3D%20%5Cbegin%7Bpmatrix%7D%201%20%260%20%5C%5C%20%5Cfrac%7Bn_1-n_2%7D%7Bn_1%20%5Crho_2%7D%26%20%5Cfrac%7Bn_2%7D%7Bn_1%7D%20%5Cend%7Bpmatrix%7D%20%5Cbegin%7Bpmatrix%7D%201%20%26l%20%5C%5C%200%261%20%5Cend%7Bpmatrix%7D%20%5Cbegin%7Bpmatrix%7D%201%20%260%20%5C%5C%20%5Cfrac%7Bn_2-n_1%7D%7Bn_2%20%5Crho_1%7D%26%5Cfrac%7Bn_1%7D%7Bn_2%7D%20%5Cend%7Bpmatrix%7D%20%3D%20%5Cbegin%7Bpmatrix%7D%201+%5Cfrac%7B%28n_2-n_1%29l%7D%7Bn_2%20%5Crho_1%7D%20%26%20%5Cfrac%7Bn_1%7D%7Bn_2%7Dl%5C%5C%20-%5Cfrac%7Bn_2-n_1%7D%7Bn_1%7D%5B%5Cfrac%7B1%7D%7B%5Crho_2%7D-%5Cfrac%7B1%7D%7B%5Crho_1%7D+%5Cfrac%7B%28n_2-n_1%29l%7D%7Bn_2%20%5Crho_1%20%5Crho_2%7D%5D%20%261+%5Cfrac%7B%28n_2-n_1%29l%7D%7Bn_2%20%5Crho_2%7D%20%5Cend%7Bpmatrix%7D

······(式2.1.3.3)


比较式2.1.3.2和式2.1.3.2可得
eq?%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%20h_1%3D-%5Cfrac%7Bn_1%20%5Crho_1%20l%7D%7Bn_2%28%5Crho_2-%5Crho_1%29-%28n_2-n_1%29l%7D%5C%5C%20h2%20%3D-%5Cfrac%7Bn_1%20%5Crho_2%20l%7D%7Bn_2%28%5Crho_2-%5Crho_1%29-%28n_2-n_1%29l%7D%20%5C%5C%20%5Cfrac%7B1%7D%7Bf%7D%3D%5Cfrac%7B%28n_2-n_1%29%7D%7Bn_1%7D%5B%5Cfrac%7B1%7D%7B%5Crho_2%7D-%5Cfrac%7B1%7D%7B%5Crho_1%7D+%5Cfrac%7B%28n_2-n_1%29l%7D%7Bn_2%20%5Crho_1%20%5Crho_2%7D%5D%20%5Cend%7Bmatrix%7D%5Cright.···(式2.1.3.4)


实际工作中常取eq?%5Crho_2%3D-%5Crho_1eq?n_1%3D1


3.薄透镜序列


将晶体视为等焦距薄透镜序列,如图2.1.3.2所示。

1c6f44660446407fbe8b007576123556.png

图2.1.3.2   薄透镜序列示意图

其中
eq?f_1%3Df_2%3D%5Ccdots%20%3Df_n%3Df   ······(式2.1.3.5)


则晶体的传输矩阵为
eq?M_%7Bf1%7D%3D%5Cleft%20%5B%20%5Cbegin%7Bpmatrix%7D%201%20%260%20%5C%5C%20-%5Cfrac%7B1%7D%7Bf%7D%26%201%20%5Cend%7Bpmatrix%7D%20%5Cbegin%7Bpmatrix%7D%201%20%26L%20%5C%5C%200%26%201%20%5Cend%7Bpmatrix%7D%20%5Cright%20%5D%20%5En%20%5Ccdot%20%5Cbegin%7Bpmatrix%7D%201%20%260%20%5C%5C%20-%5Cfrac%7B1%7D%7Bf%7D%261%20%5Cend%7Bpmatrix%7D···(式2.1.3.6)


薄透镜序列近似中,若薄透镜焦距eq?f_i%28i%3D1%2C2%2C%5Ccdots%2Cn%29满足其他关系,需特殊考虑。如单端面泵浦和双端面泵浦情况。

eq?M_%7Bf1%7D%3D%5Cleft%20%5C%7B%20%5Cprod_%7Bi%3Dn%7D%5E%7Bi%3D2%7D%5Cleft%20%28%20%5Cbegin%7Bpmatrix%7D%201%20%260%20%5C%5C%20-%5Cfrac%7B1%7D%7Bf_i%7D%261%20%5Cend%7Bpmatrix%7D%20%5Cbegin%7Bpmatrix%7D%201%20%26L%20%5C%5C%200%261%20%5Cend%7Bpmatrix%7D%20%5Cright%20%29%20%5Cright%20%5C%7D%20%5Ccdot%20%5Cbegin%7Bpmatrix%7D%201%20%260%20%5C%5C%20-%5Cfrac%7B1%7D%7Bf%7D%261%20%5Cend%7Bpmatrix%7D······(式2.1.3.7)


5.  梯度热透镜

f2c41da73f0d4ed2a6bb102832589e82.png

图2.1.3.3   梯度热透镜示意图


设介质折射率满足
eq?n%28r%29%3Dn_0-%5Cfrac%7Bn_2%20r%5E2%7D%7B2%7D···(式2.1.3.8)


将其代入亥姆霍次方程,在近轴近似及缓变振幅近似下,可以求解得到其传输矩阵为
eq?M%7C_%7Bn2%3E0%7D%3D%5Cbegin%7Bpmatrix%7D%20cos%28%5Cgamma%20L%29%20%26%20%5Cfrac%7Bsin%28%5Cgamma%20L%29%7D%7Bn_2%20%5Cgamma%7D%20%5C%5C%20-n_2%20%5Cgamma%20sin%28%5Cgamma%20L%29%20%26%20cos%28%5Cgamma%20L%29%20%5Cend%7Bpmatrix%7D···(式2.1.3.9)


其中
eq?%5Cgamma%3D%5Csqrt%7B%5Cfrac%7Bn_2%7D%7Bn_1%7D%7D    ······(式2.1.3.10)


利用上述近似关系,编辑脚本文件Atest_MainCryAppro.m。运行得仿真结果如下图所示。

ae85fdc34e854bd88a790691e3d5cdbe.png

图2.1.3.4   不同近似的光束尺寸随位置分布


由图可见,对于给定焦距的厚透镜近似,可以取得比较满意的结果。以后的程序代码中,对晶体均采用厚透镜近似。

 

2.1.4 复杂光束传输矩阵的使用

本节使用高斯光束的复参数表示和ABCD定律推导出高斯光束通过复杂光学系统的一般变换公式。


如图2.1.4.1所示,在折射率的物空间处入射复参数为的高斯光束,通过变换矩阵eq?%5Cbegin%7Bpmatrix%7D%20a%20%26b%20%5C%5C%20c%26%20d%20%5Cend%7Bpmatrix%7D的复杂光学系统后,在折射率的像空间处变换为复参数的高斯光束,于是有


eq?%5Cfrac%7B1%7D%7Bq_i%7D%3D%5Cfrac%7B1%7D%7BR_i%7D-i%5Cfrac%7B%5Clambda_i%7D%7B%5Cpi%20w_i%5E2%7D%3DX_i+iY_i%2Ci%3D1%2C2···(式2.1.4.1)

d8e7d5f057c947f3aeb8ccbb539711ae.png

图2.1.4.1   高斯光束通过复杂光学系统的变换


图2.1.4.1中s1、s2分别以RP1、RP2为参考计算,s1在RP1之左为正,s2在RP2之右为正,反之为负。由q1至q2的变换遵从ABCD定律


eq?%5Cfrac%7B1%7D%7Bq_2%7D%3D%5Cfrac%7BC+%5Cfrac%7BD%7D%7Bq1%7D%7D%7BA+%5Cfrac%7BB%7D%7Bq_1%7D%7D  ······(式2.1.4.2)
式中

eq?%5Cmathbf%7BM%7D%3D%5Cbegin%7Bpmatrix%7D%20A%20%26B%20%5C%5C%20C%26%20D%20%5Cend%7Bpmatrix%7D%3D%20%5Cbegin%7Bpmatrix%7D%201%20%26s_2%20%5C%5C%200%261%20%5Cend%7Bpmatrix%7D%20%5Cbegin%7Bpmatrix%7D%20a%26%20b%5C%5C%20c%26%20d%20%5Cend%7Bpmatrix%7D%20%5Cbegin%7Bpmatrix%7D%201%20%26%20s_1%5C%5C%200%26%201%20%5Cend%7Bpmatrix%7D%20%3D%20%5Cbegin%7Bpmatrix%7D%20a+cs_2%20%26b+as_1+ds_2+cs_1s_2%20%5C%5C%20c%26%20d+cs_1%20%5Cend%7Bpmatrix%7D······(式2.1.4.3)


将式2.1.4.1、式2.1.4.3代入式2.1.4.2,并利用变换矩阵的性质得

eq?X_2%3D%5Cfrac%7B%28X_1%5E2+Y_1%5E2%29BD+X_1%28AD+BC%29+AC%7D%7BA%5E2+2X_1AB+%28X_1%5E2+Y_1%5E2%29B%5E2%7D

eq?Y_2%3D%5Cfrac%20%7B%20%5Cfrac%20%7Bn_1%7D%20%7Bn_2%7D%20Y_1%7D%20%7BA%5E2+2X_1AB+%28X_1%5E2+Y_1%5E2%29B%5E2%7D······(式2.1.4.4)


式2.1.4.4即高斯光束通过复杂光学系统的一般变换公式,式中诸量均为实数。现对公式的一些特例进行讨论。


(1)当入射光束取在束腰eq?w_%7B01%7D处,eq?X_1%3D0


eq?Y_1%3DY_%7B01%7D%3D%5Cfrac%7B%5Clambda%20_1%7D%7B%5Cpi%20w_%7B01%7D%5E2%7D%3D%5Cfrac%7B1%7D%7BZ_%7B01%7D%7D···(式2.1.4.5)
式中为物方瑞利长度,则式2.1.4.4成为

eq?X_2%3D%5Cfrac%7BBD+ACZ_%7B01%7D%5E2%7D%7BB%5E2+A%5E2Z_%7B01%7D%5E2%7D······(式2.1.4.6)


(2)实际工作中最感兴趣的是eq?X_1%3DX_2%3D0,即研究入射与出射高斯光束束腰间的变换问题,此时式2.1.4.4简化为

 

eq?BD+ACZ_%7B01%7D%5E2%3D0

eq?Z_%7B02%7D%3D%5Cfrac%7BB%5E2+A%5E2Z_%7B01%7D%5E2%7D%7B%5Cfrac%7Bn_1%7D%7Bn_2%7DZ_%7B01%7D%7D······(式2.1.4.7)



eq?s_1%3Ds_0%2Cs_2%3Ds_i······(式2.1.4.8)
eq?c%5Cneq0时,可将式2.1.4.7写为

eq?s_i%3D-%5Cfrac%7Ba%7D%7Bc%7D+%5Cfrac%7B%5Cfrac%7Bn_1%7D%7Bn_2%7D%28s_0+%5Cfrac%7Bd%7D%7Bc%7D%29%7D%7B%28d+cs_0%29%5E2+c%5E2Z_%7B01%7D%5E2%7D

2%7D%7D······(式2.1.4.9)


式2.1.4.9决定了像方束腰位置eq?s_i和像方束腰大小eq?w_%7B02%7D,常称为成像公式和物像比例公式。
eq?n_2%3Dn_1%3D1时,式2.1.4.7亦可写成为

eq?as_0+ds_i+cs_0s_i+b%3D-Z_%7B01%7D%5E2%5Cfrac%7Bc%28a+bs_i%29%7D%7Bd+cs_0%7D

2%7D······(式2.1.4.10)


基于此理论和使用嵌入式基模光束描述,编写了ABCDRez代码包中光束传输函数(fLRMm、fLLMm、fRLMm、fRRMm)。


*注:第二个字母表示入射光束相对于光学系统的位置,第三个字母表示出射光束相对于光学系统的位置。如fLRMm中,“L”表示从光学系统左侧入射,“R”表示从光学系统右侧出射。


函数中令eq?n_2%3Dn_1%3D1,这也是常见的情况。若遇折射率不等,只需在变换前,预先传输通过一不同介质界面的传输矩阵即可。详见脚本文件Atest_fXXMx.m。

*高阶高斯光束由左向右传输

[w02m,theta02m,L02m]=fLRMm(w01m,theta01m,L01m,lambda,cM,lencM,dcM)

变量

意义

w01m,theta01m,L01m

输入高斯光束束腰、发散角、光腰位置

lambda

光束波长

cM

光学系统的2*2变换矩阵

lencM

光学系统的长度

dcM

入射光束与光学系统的第一接触面相对于原点所处位置

*高阶高斯光束由左向左传输(反射)

[w02m,theta02m,L02m]=fLLMm(w01m,theta01m,L01m,lambda,cM,lencM,dcM)

*高阶高斯光束由右向左传输

[w02m,theta02m,L02m]=fRLMm(w01m,theta01m,L01m,lambda,cM,lencM,dcM)

*高阶高斯光束由右向右传输(反射)

[w02m,theta02m,L02m]=fRRMm(w01m,theta01m,L01m,lambda,cM,lencM,dcM)


2.1.5 光束拟合

如前所述,高斯光束的束宽由式2.1.5.1描述,M2因子由式2.1.5.2定义。

eq?w%5E2%28z%29%3Dw_0%5E2+%5Ctheta_0%5E2%20%5Ccdot%20%28z-L_0%29%5E2  ···(式2.1.5.1)
eq?M%5E2%3Dw_0%5Ctheta_0%20%5Cfrac%20%7B%5Cpi%20n%7D%7B%5Clambda%7D      ···(式2.1.5.2)


而光斑大小常采用光强的二阶矩描述。

eq?r_%7B%5Csigma%7D%28z%29%3D%5Csqrt%7B2%7D%5Csigma_%7B%7D%28z%29%3B%20r_%7B%5Csigma%20x%7D%28z%29%3D%5Csqrt%7B2%7D%5Csigma_%7Bx%7D%28z%29%3B%20r_%7B%5Csigma%20y%7D%28z%29%3D%5Csqrt%7B2%7D%5Csigma_%7By%7D%28z%29······(式2.1.5.3)

 

eq?%5Csigma%5E2%28z%29%3D%5Cfrac%7B%5Ciint_%7B%7D%5E%7B%7Dr%5E2%20I%28r%2Cz%29drd%5Cvarphi%7D%7B%5Ciint_%7B%7D%5E%7B%7DI%28r%2Cz%29rdrd%5Cvarphi%7D

eq?%5Csigma_x%5E2%28z%29%3D%5Cfrac%7B%5Ciint_%7B%7D%5E%7B%7D%28x-%5Cbar%7Bx%7D%29%5E2%20I%28x%2Cy%2Cz%29dxdy%7D%7B%5Ciint_%7B%7D%5E%7B%7DI%28x%2Cy%2Cz%29dxdy%7D

eq?%5Csigma_y%5E2%28z%29%3D%5Cfrac%7B%5Ciint_%7B%7D%5E%7B%7D%28y-%5Cbar%7By%7D%29%5E2%20I%28x%2Cy%2Cz%29dxdy%7D%7B%5Ciint_%7B%7D%5E%7B%7DI%28x%2Cy%2Cz%29dxdy%7D······(式2.1.5.4)


其中、是光强的一阶矩,分别表示为

eq?%5Cbar%7Bx%7D%3D%5Cfrac%7B%5Ciint_%7B%7D%5E%7B%7DxI%28x%2Cy%2Cz%29dxdy%7D%7B%5Ciint_%7B%7D%5E%7B%7DI%28x%2Cy%2Cz%29dxdy%7D

eq?%5Cbar%7By%7D%3D%5Cfrac%7B%5Ciint_%7B%7D%5E%7B%7DyI%28x%2Cy%2Cz%29dxdy%7D%7B%5Ciint_%7B%7D%5E%7B%7DI%28x%2Cy%2Cz%29dxdy%7D······(式2.1.5.5)

仿真中常取为零。
根据上述理论,编辑函数D4sigmaofI和D4sigmaofIr通过截面定义束宽。

[wx,wy]=D4sigmaofI(XX,YY,Iz)

变量

意义

XX,YY

截面网格

Iz

截面光强

wx

该截面拟合后x方向束宽

wy

该截面拟合后y方向束宽

wr=D4sigmaofIr(Iz)

变量

意义

Iz

截面光强

wr

该截面拟合后束宽

 

调用M2FitZ函数通过不同位置的束宽拟合光束。
 

[w03m,theta03m,L03m,M03m]= M2FitZ(lZ, wZ,lambda)

变量

意义

lZ

采样点位置

wZ

采样点的束宽(半径)

lambda

光束波长

w03m,theta03m,L03m

拟合后的光束光腰、发散角、光腰位置

M03m

拟合后的光束质量M2

 

 


第三部分 应用


3.1 光束调节与匹配


3.1.1 望远镜调节与设计

设由双凸或双凹厚透镜构成望远镜调节光束束宽、发散角、准直性等。


示例:
现有光束eq?w_%7B01%7D%3D1.35mmeq?%5Ctheta_%7B01%7D%3D1.5195mradeq?L_%7B01%7D%3D0.3995m从望远镜左侧入射。光束与望远镜接触的第一个面距原点eq?d_%7BcM%7D%3D1m。欲进行光束变换,使得光束eq?w_%7B03%7Deq?%5Ctheta_%7B03%7Deq?L_%7B03%7D满足指标要求。
(a). eq?w_%7B03%7D%3D%280.5%5Cpm%200.2%29*w_%7B01%7D
(b). eq?%5Ctheta_%7B03%7D%3D%282%5Cpm%200.3%29*%5Ctheta_%7B01%7D
(c). eq?L_%7B03%7D%3Ed_%7BcM%7D+len_%7BcM%7D,且eq?%5Cleft%20%7C%20L_%7B03%7D-%28d_%7BcM%7D+len_%7BcM%7D%29%20%5Cright%20%7C%3C0.8*Z_%7B03%7D
(d). 系统附近的光斑半径需大于0.5mm,系统的总长度eq?len_%7BcM%7D%3C160mm
(e). 出口处的光斑与入口处的光斑的关系为eq?w_%7Bout%7D%3D%280.5%5Cpm%200.1%29*w_%7Bin%7D.
其中eq?len_%7BcM%7D为望远镜系统的总长度,eq?Z_%7B03%7D%3D%5Cfrac%7Bw_%7B03%7D%7D%7B%5Ctheta_%7B03%7D%7D为从右侧出射光束的瑞利长度。


脚本文件Atest_Telescope.m描述了此类型的设计方案,并计算得出了望远镜设计的具体参数。


3.1.2 单程或多程放大

3.1.2.1 棒状晶体热透镜效应

圆棒晶体端泵时,可视为轴对称情形,与角度无关,此时为二维情况。那么热传导方程为

eq?%5Cfrac%7B%5Cpartial%5E2%20T%28r%2Cz%29%29%7D%7B%5Cpartial%20r%5E2%7D+%5Cfrac%7B1%7D%7Br%7D%5Cfrac%7B%5Cpartial%20T%28r%2Cz%29%7D%7B%5Cpartial%20r%7D+%5Cfrac%7B%5Cpartial%5E2%20T%28r%2Cz%29%7D%7B%5Cpartial%20z%5E2%7D%3D-%5Cfrac%7B1%7D%7Bk%7Dq_v%28r%2Cz%29······(式3.1.2.1)


可使用MATLAB的PDE工具箱方便地求解此热传导方程(式3.1.2.1)。PDE工具箱中标准椭圆型方程为
eq?-%5Ctriangledown%20%5Ccdot%20%28c%5Ctriangledown%20u%20%29+au%3Df   ···(式3.1.2.2)


式3.1.2.2考虑与z无关,在直角坐标系展开为
eq?-%5Cfrac%7B%5Cpartial%20%7D%7B%5Cpartial%20x%7D%28c%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20x%7D%29-%5Cfrac%7B%5Cpartial%20%7D%7B%5Cpartial%20y%7D%5Cfrac%7B%5Cpartial%20u%20%7D%7B%5Cpartial%20y%7D+au%3Df   ···(式3.1.2.3)


做变量替换得
eq?-%5Cfrac%7B%5Cpartial%20%7D%7B%5Cpartial%20z%7D%28c%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20z%7D%29-%5Cfrac%7B%5Cpartial%20%7D%7B%5Cpartial%20r%7D%28c%20%5Cfrac%7B%5Cpartial%20u%20%7D%7B%5Cpartial%20r%7D%29+au%3Df   ···(式3.1.2.4)


若令
eq?c%3Dr%3Ba%3D0%3Bf%3D%5Cfrac%7B1%7D%7Bk%7Dq_v%28r%2Cz%29r   ···(式3.1.2.5)


则可得
eq?-%5Cfrac%7B%5Cpartial%20%7D%7B%5Cpartial%20z%7D%28r%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20z%7D%29-%5Cfrac%7B%5Cpartial%20%7D%7B%5Cpartial%20r%7D%28r%20%5Cfrac%7B%5Cpartial%20u%20%7D%7B%5Cpartial%20r%7D%29%3D%5Cfrac%7B1%7D%7Bk%7D%20q_v%28r%2Cz%29r   ···(式3.1.2.6)


化简即可得轴对称情形的热传导方程式3.1.2.1。即可使用MATLAB的PDE工具箱方便地求解此热传导方程式3.1.2.1。


单端泵浦时

eq?q_v%28r%2Cz%29%3D%5Cfrac%7B2%5Calpha%20%5Ceta_%7Bheat%7D%20P_%7Bin%7D%7D%7B%5Cpi%20w%5E2%281-exp%28-%5Calpha%20L%29%29%7Dexp%28-2%5Cfrac%7Br%5E2%7D%7Bw%5E2%7D%29exp%28-%5Calpha%20z%29······(式3.1.2.7)


其中w为z的函数:eq?w%28z%29%3D%5Csqrt%7Bw_0%5E2+%5Ctheta%5E2%28z-L_0%29%5E2%7Deq?%5Calpha为吸收系数,eq?%5Ceta_%7Bheat%7D为发热效率,eq?P_%7Bin%7D为入射功率,L为晶体长度。


简单考虑,双端泵浦的情况就相当于两个单端泵浦的热源函数相加。


查阅文献资料得晶体的热力学参数,并由此编写脚本文件Atest_heat0x.m运行得出结果如下。(其中,黑线为简单考虑热透镜后的泵浦光束的轮廓,等高线为归一化后的热源分布,彩图为稳定后的归一化热分布。)

1ca967de12344cf5b6bef131dbcab903.png

图3.1.2.1   单端泵浦热分析图

5405aec52e9d47b08a2820cb49e8e320.png

图3.1.2.2   双端泵浦热分析图


3.1.2.2 反射自再现

当入射光束参数为eq?w_%7B01%7Deq?%5Ctheta_%7B01%7Deq?L_%7B01%7D时,总可以找到若干组放置于eq?d_%7B%5Crho%7D处曲率为的反射镜,使得入射前后光束参数相同,即eq?w_%7B02%7D%3Dw_%7B01%7Deq?%5Ctheta_%7B02%7D%3D%5Ctheta_%7B01%7Deq?L_%7B02%7D%3DL_%7B01%7D


结合函数fLLMm、fRRMm 编写反射自再现脚本。详见脚本文件Atest_fXXMm.m。

e1dbe65535d947359cf74c5f6d54b797.png

图3.1.2.3   不同曲率实现反射自再现放置位置图

 


3.2 驻波谐振腔

可使用矩阵光学方法对多元件的稳定腔进行分析,采用“G参数等价腔”来描述腔内束宽。参见吕百达教授著《激光光学》第十章第一节。

3.2.1 两个厚透镜晶体加曲面腔镜的谐振腔

使用“G参数等价腔”相关内容,编写具体函数Rez4mThick。


    ee3460aa7f4d49858172bd64feea4ff6.png
图3.2.1.1   谐振腔示意图

 

931afcb114614c1bbe4e7be051b55668.png

图3.2.1.2  腔内束宽示意图

[www,wthetaL0,FlagRez]=Rez4mThick(lambda,RezPara,str)

变量

意义

lambda

波长

RezPara

谐振腔参数

str

若str为’plot’则绘图;否则,不绘制

www

有效的束宽(这里用来描述模式体积)

wthetaL0

靠近输出镜的光束的束腰、发散角、光腰位置信息

FlagRez

谐振腔的标志信息

 

3.2.2 定距离求曲率

 

实际应用中常需要设计紧凑型激光器,需在狭小空间放置腔镜。甚至,直接对晶体端面进行处理,使最终构成谐振腔能极大节省空间,达到激光器小型化的目的。


详见脚本文件Atest_Rez4mThickxxD2Rho.m。


3.2.3 定曲率求距离


实际应用中,常常已经制备了若干曲率半径已知的腔镜,通过不同的组合搭配使得激光器拥有最佳的性能。


详见脚本文件Atest_Rez4mThickxxRho2D.m。


3.2.4 腔内聚焦光束的设计


激光谐振腔内为实现非线性变化而需要高密度激光时,则需要在非线性晶体内形成光腰。设计要求增益介质处的振荡光斑较大,以实现较好的光束质量;非线性晶体中心为振荡光斑的光腰,且其大小满足需求。

df7007189c7c46aca92e47019d795b5f.png

图3.2.4.1  腔内聚焦光束设计示意图


脚本文件Atest_Rez7mThickxxFocusFDRhoxxx.m通过暴力求解得出一些信息,但耗时长,且计算出的腔型也比较敏感。

 

下面介绍上述需求的另一种设计思路。


步骤1:
设计一个不含非线性晶体及其他变换元件的光学谐振腔,该谐振腔尽可能对热焦距变换不敏感。


步骤2:
从该谐振腔某处插入变换元件,使得原谐振腔的光束恰能聚焦在非线性晶体中心,且光斑大小满足预定要求。(特别地,若是插入4 f系统则入射与出射光束不变,但却浪费了空间。其部分功能设计、实现见脚本文件Atest_Compensation.m)


步骤3:
从非线性晶体另一端插入透镜,并使得其经腔镜反射后能自再现。(部分功能设计、实现见脚本文件Atest_fXXMm.m)


3.3 行波谐振腔

3.3.1 两个厚透镜晶体加透镜的谐振腔


  使用“G参数等价腔”相关内容,编写具体函数Rez4mThickRing。

f48784271658447fb404878db98916a1.png

图3.3.1.1   谐振腔示意图

4fd86333cb4f4856ae41b5dfe9283486.png

图3.3.1.2   谐振腔腔内束宽示意图(从输出镜展开)


[www,wthetaL0,FlagRez]=Rez4mThickRing(lambda, RezPara,str)

变量

意义

lambda

波长

RezPara

谐振腔参数

str

若str为’plot’则绘图;否则,不绘制

www

有效的束宽(这里用来描述模式体积)

wthetaL0

靠近输出镜的光束的束腰、发散角、光腰位置信息

FlagRez

谐振腔的标志信息

 


第四部分 总结与致谢


文章描述了ABCDRez代码包的基础理论、功能及应用,读者可以适当修改以适应实际需求。本人对非稳腔涉猎不足,ABCDRez代码包中并未涉及非稳腔(Unstable Resonator)的设计与应用。


行笔匆匆,难免纰漏与错误,望请批评指证!


如果读者有更多关于非稳腔的知识也欢迎共同交流学习!


在此感谢前辈们的辛勤劳动所取的成果!


在此感谢读者的阅读,希望文章对你有所帮助!

 

 

%% 版本信息
% 作者:                Quincy Howard
% 联系方式:           quincy.hd@qq.com
% 文件信息更新平台为   GitHub、CSDN博客
% 若使用请注明来源
% 最后编辑于           2024 年 07 月 10 日

 

激光光束传输与谐振腔仿真ABCDRez

https://download.csdn.net/download/qq_42712244/89533054

https://ww2.mathworks.cn/matlabcentral/fileexchange/169856-laser-beam-propagation-and-resonator-simulation-abcdrez?s_tid=ta_fx_results

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值