代码包下载地址:
https://download.csdn.net/download/qq_42712244/89533054
第一部分 说明
现阶段用于激光谐振腔的仿真软件多种多样,但大多已是集合而成,用户无法了解其详细内容。
本代码包ABCDRez是基于MATLAB语言的激光高斯光束传输(Laser Gaussian Beam Propagation)及激光谐振腔仿真(Laser Resonator Simulation)代码包。文章使用高斯光束描述激光,简单介绍了热效应(Thermal Effect)、腔内非线性变换(Nonlinear Frequency Transformation),主要介绍了光束的调节与匹配(Beam Adjusting and Matching)、驻波谐振腔(Standing Stable Resonator)、行波谐振腔(Traveling Stable Resonator)相关内容。用接近数学表达式的自然化语言,使用户更易学习、掌握及灵活运用。
其核心内容可以参见吕百达教授著《激光光学 光束描述、传输变换与光腔技术物理》、reZonator软件官网、羊国光教授等著《高等物理光学》、李港教授著《激光频率的变换与扩展》、Walter Koechner著《固体激光工程》等。
第二部分 基础
2.1 高斯光束
2.1.1 高斯光束的推导
设沿坐标z方向传播的细光束,在不计介质损耗的情况下,其光波的复振幅可以近似表达为
···(式2.1.1.1)
式中k为传播常数(即波矢量的值),表示沿坐标z方向迅速变化的相位项,U则为坐标z的缓慢变化的函数,代入亥姆霍兹方程,得到U满足的标量方程
···(式2.1.1.2)
在振幅慢变化近似下,可略去关于z的二阶导数,得
······(式2.1.1.3)
只考虑旋转对称系统,令矢径。设近轴亥姆霍兹的慢变化、细光束解具有如下形式
···(式2.1.1.4)
式中P(z)称为相移参数,q(z)称为光束参数,代入式2.1.1.3,得到 ··(式2.1.1.5)
式中表示x或y,
······(式2.1.1.6)
······(式2.1.1.7)
以式2.1.1.6、式2.1.1.7代入式2.1.1.3,得到··(式2.1.1.8)
上式对所有的r成立,这要求式2.1.1.8左边关于r级数的各次幂的系数均为0,即
······(式2.1.1.9)
以及
······(式2.1.1.10)
式2.1.1.9的解为
······(式2.1.1.11)
式中为待定常数。将式2.1.1.11代入式2.1.1.10,得到···(式2.1.1.12)
把积分常数表示为,是为了方便处理。进一步将式2.1.1.9的解写成如下形式
······(式2.1.1.13)
其中R(z)和w(z)是z的实函数,这样就可以u(z)把表示为
······(式2.1.1.14)
表示常数相位,可取为1
,式2.1.1.14成为
······(式2.1.1.15)
指数函数中括号内的实数部分对应的是相位:···(式2.1.1.16)
符号表示取实部。当时,在与z轴正交的平面上相位函数为常数,光束的波面为平面。我们选择该平面的坐标z=0,称为“光腰”,此处参数为
······(式2.1.1.17)
其中为光腰尺寸。代入式2.1.1.11得到
······(式2.1.1.18)
将式2.1.1.18代入式2.1.1.13,令等式两边的实部和虚部分别相等,得到······(式2.1.1.19)
和······(式2.1.1.20)
式2.1.1.19为波面半径,式2.1.1.20为光束尺寸。
此外,将式2.1.1.17代入式2.1.1.12得到
······(式2.1.1.21)
的实部为······(式2.1.1.22)
将其代入式2.1.1.13,得到······(式2.1.1.23)
的虚部对式2.1.1.13的贡献为······(式2.1.1.24)
最终得到
······(式2.1.1.25)
式2.1.1.25即为高斯光束基模的表达式。
2.1.2 高斯光束的查看
2.1.2.1 高阶与低阶高斯光束轮廓
高斯光束的三个重要参量,束宽、等相位面曲率半径、相位因子可分别由以下三式描述:······(式2.1.2.1)
······(式2.1.2.2)
······(式2.1.2.3)
其中,Z0为瑞利长度,其为 ······(式2.1.2.4)
定义光束传播比(或称光束质量因子)为 ······(式2.1.2.5)
其中n为光束所在空间的折射率。
使用嵌入式高斯光束描述高阶高斯光束,调用函数wzplot查看。
wzplot(w02m,theta02m,L02m,lambda,A,B)
图2.1.2.1 高阶高斯光束束宽随距离分布
2.1.2.2 基模高斯光束的查看
基模高斯光束的电场强度可以表示为,
······(式2.1.2.6)
方便起见,取。又
······(式2.1.2.7)
而拉盖尔高斯光束的电场强度为
······(式2.1.2.8)
在柱坐标系中,电场强度与无关,同样取
。当且时,式2.1.2.8退化为基模高斯光束的电场强度(式2.1.2.6)。
由此可以查看基模高斯光束的光强及位相随距离的分布。
(a) 不同位置的光强
(b) 不同位置的光强分布
(c) 不同位置与中心的相位差
(d) 不同位置与中心的相位差分布
[XX,YY,Eplrphiz,Phizz]=LGbeam(w02m,theta02m,L02m,lambda,getz,p,l,num)
[Eplrphiz,Phizz]=LGbeamr(w02m,theta02m,L02m, lambda,getz,p,l, r,phir)
图2.1.1.2 基模高斯光束的光强及位相随距离的分布
2.1.2.3 拉盖尔高斯光束与厄米高斯光束的查看
a. 拉盖尔高斯光束
当且
时,光束为高阶的拉盖尔高斯光束。其电场强度
如式2.1.2.8所示。同理使用LGbeam或LGbeamr函数可以得到拉盖尔高斯光束的光强分布。
[XX,YY,Eplrphiz,Phizz]=LGbeam(w02m,theta02m,L02m,lambda,getz,p,l,num)
图2.1.1.3 高阶的拉盖尔高斯光束的光腰处的光强分布
b. 厄米高斯光束
厄米高斯光束的电场强度为
······(式2.1.2.9)
使用HGbeam函数可以得到厄米高斯光束的光强分布。
[XX,YY,Eplrphiz,Phizz]=HGbeam(w02m,theta02m,L02m,lambda,getz,m,n,num)
图2.1.1.2 高阶的厄米高斯光束的光腰处的光强分布
2.1.3 基础传输矩阵
2.1.3.1 常用光学矩阵
01 | 距离为l的自由空间n=1
| ![]() | |
02 | 界面折射 (折射率分别为 n1、n2
| ![]() | |
03 | 折射率n、长l的均匀介质 | ![]() | |
| 薄透镜(焦距f) | ![]() | |
5 | 球面反射镜(曲率半径
| ![]() | |
6 | 球面折射 | ![]() | |
07 | 厚透镜 | ![]() | |
08 | 平面反射 | ![]() | |
09 | 调焦望远镜 | ![]() | |
10 | 离焦望远镜 | ![]() | |
*见脚本文件ABCDM.m
2.1.3.2 晶体近似
1. 薄透镜
将晶体视为薄透镜,由实验测得其焦距为f,那么晶体的传输矩阵为 ······(式2.1.3.1)
2. 厚透镜
将晶体视为双凸厚透镜。设厚透镜主距为、,焦距为,则有
······(式2.1.3.2)
实际工作中常取h1=h2。
另一方面,设厚透镜两端面曲率半径分别为、
,几何厚度l,折射率
的介质构成,并置于折射率为的介质中(如图2.1.3.1所示),则变换矩阵为
图2.1.3.1 厚透镜示意图
······(式2.1.3.3)
比较式2.1.3.2和式2.1.3.2可得···(式2.1.3.4)
实际工作中常取,
。
3.薄透镜序列
将晶体视为等焦距薄透镜序列,如图2.1.3.2所示。
图2.1.3.2 薄透镜序列示意图
其中 ······(式2.1.3.5)
则晶体的传输矩阵为···(式2.1.3.6)
薄透镜序列近似中,若薄透镜焦距满足其他关系,需特殊考虑。如单端面泵浦和双端面泵浦情况。
······(式2.1.3.7)
5. 梯度热透镜
图2.1.3.3 梯度热透镜示意图
设介质折射率满足···(式2.1.3.8)
将其代入亥姆霍次方程,在近轴近似及缓变振幅近似下,可以求解得到其传输矩阵为···(式2.1.3.9)
其中 ······(式2.1.3.10)
利用上述近似关系,编辑脚本文件Atest_MainCryAppro.m。运行得仿真结果如下图所示。
图2.1.3.4 不同近似的光束尺寸随位置分布
由图可见,对于给定焦距的厚透镜近似,可以取得比较满意的结果。以后的程序代码中,对晶体均采用厚透镜近似。
2.1.4 复杂光束传输矩阵的使用
本节使用高斯光束的复参数表示和ABCD定律推导出高斯光束通过复杂光学系统的一般变换公式。
如图2.1.4.1所示,在折射率的物空间处入射复参数为的高斯光束,通过变换矩阵的复杂光学系统后,在折射率的像空间处变换为复参数的高斯光束,于是有
···(式2.1.4.1)
图2.1.4.1 高斯光束通过复杂光学系统的变换
图2.1.4.1中s1、s2分别以RP1、RP2为参考计算,s1在RP1之左为正,s2在RP2之右为正,反之为负。由q1至q2的变换遵从ABCD定律
······(式2.1.4.2)
式中
······(式2.1.4.3)
将式2.1.4.1、式2.1.4.3代入式2.1.4.2,并利用变换矩阵的性质得
······(式2.1.4.4)
式2.1.4.4即高斯光束通过复杂光学系统的一般变换公式,式中诸量均为实数。现对公式的一些特例进行讨论。
(1)当入射光束取在束腰处,
,
···(式2.1.4.5)
式中为物方瑞利长度,则式2.1.4.4成为
······(式2.1.4.6)
(2)实际工作中最感兴趣的是,即研究入射与出射高斯光束束腰间的变换问题,此时式2.1.4.4简化为
······(式2.1.4.7)
设······(式2.1.4.8)
当时,可将式2.1.4.7写为
······(式2.1.4.9)
式2.1.4.9决定了像方束腰位置和像方束腰大小
,常称为成像公式和物像比例公式。
当时,式2.1.4.7亦可写成为
······(式2.1.4.10)
基于此理论和使用嵌入式基模光束描述,编写了ABCDRez代码包中光束传输函数(fLRMm、fLLMm、fRLMm、fRRMm)。
*注:第二个字母表示入射光束相对于光学系统的位置,第三个字母表示出射光束相对于光学系统的位置。如fLRMm中,“L”表示从光学系统左侧入射,“R”表示从光学系统右侧出射。
函数中令,这也是常见的情况。若遇折射率不等,只需在变换前,预先传输通过一不同介质界面的传输矩阵即可。详见脚本文件Atest_fXXMx.m。
*高阶高斯光束由左向右传输 [w02m,theta02m,L02m]=fLRMm(w01m,theta01m,L01m,lambda,cM,lencM,dcM)
*高阶高斯光束由左向左传输(反射) [w02m,theta02m,L02m]=fLLMm(w01m,theta01m,L01m,lambda,cM,lencM,dcM) *高阶高斯光束由右向左传输 [w02m,theta02m,L02m]=fRLMm(w01m,theta01m,L01m,lambda,cM,lencM,dcM) *高阶高斯光束由右向右传输(反射) [w02m,theta02m,L02m]=fRRMm(w01m,theta01m,L01m,lambda,cM,lencM,dcM) |
2.1.5 光束拟合
如前所述,高斯光束的束宽由式2.1.5.1描述,M2因子由式2.1.5.2定义。
···(式2.1.5.1)
···(式2.1.5.2)
而光斑大小常采用光强的二阶矩描述。
······(式2.1.5.3)
······(式2.1.5.4)
其中、是光强的一阶矩,分别表示为
······(式2.1.5.5)
仿真中常取为零。
根据上述理论,编辑函数D4sigmaofI和D4sigmaofIr通过截面定义束宽。
[wx,wy]=D4sigmaofI(XX,YY,Iz)
wr=D4sigmaofIr(Iz)
|
调用M2FitZ函数通过不同位置的束宽拟合光束。
[w03m,theta03m,L03m,M03m]= M2FitZ(lZ, wZ,lambda)
|
第三部分 应用
3.1 光束调节与匹配
3.1.1 望远镜调节与设计
设由双凸或双凹厚透镜构成望远镜调节光束束宽、发散角、准直性等。
示例:
现有光束,
,
从望远镜左侧入射。光束与望远镜接触的第一个面距原点
。欲进行光束变换,使得光束
、
、
满足指标要求。
(a). ;
(b). ;
(c). ,且
;
(d). 系统附近的光斑半径需大于0.5mm,系统的总长度;
(e). 出口处的光斑与入口处的光斑的关系为.
其中为望远镜系统的总长度,
为从右侧出射光束的瑞利长度。
脚本文件Atest_Telescope.m描述了此类型的设计方案,并计算得出了望远镜设计的具体参数。
3.1.2 单程或多程放大
3.1.2.1 棒状晶体热透镜效应
圆棒晶体端泵时,可视为轴对称情形,与角度无关,此时为二维情况。那么热传导方程为
······(式3.1.2.1)
可使用MATLAB的PDE工具箱方便地求解此热传导方程(式3.1.2.1)。PDE工具箱中标准椭圆型方程为 ···(式3.1.2.2)
式3.1.2.2考虑与z无关,在直角坐标系展开为 ···(式3.1.2.3)
做变量替换得 ···(式3.1.2.4)
若令 ···(式3.1.2.5)
则可得 ···(式3.1.2.6)
化简即可得轴对称情形的热传导方程式3.1.2.1。即可使用MATLAB的PDE工具箱方便地求解此热传导方程式3.1.2.1。
单端泵浦时
······(式3.1.2.7)
其中w为z的函数:,
为吸收系数,
为发热效率,
为入射功率,L为晶体长度。
简单考虑,双端泵浦的情况就相当于两个单端泵浦的热源函数相加。
查阅文献资料得晶体的热力学参数,并由此编写脚本文件Atest_heat0x.m运行得出结果如下。(其中,黑线为简单考虑热透镜后的泵浦光束的轮廓,等高线为归一化后的热源分布,彩图为稳定后的归一化热分布。)
图3.1.2.1 单端泵浦热分析图
图3.1.2.2 双端泵浦热分析图
3.1.2.2 反射自再现
当入射光束参数为、
及
时,总可以找到若干组放置于
处曲率为的反射镜,使得入射前后光束参数相同,即
、
及
。
结合函数fLLMm、fRRMm 编写反射自再现脚本。详见脚本文件Atest_fXXMm.m。
图3.1.2.3 不同曲率实现反射自再现放置位置图
3.2 驻波谐振腔
可使用矩阵光学方法对多元件的稳定腔进行分析,采用“G参数等价腔”来描述腔内束宽。参见吕百达教授著《激光光学》第十章第一节。
3.2.1 两个厚透镜晶体加曲面腔镜的谐振腔
使用“G参数等价腔”相关内容,编写具体函数Rez4mThick。
图3.2.1.1 谐振腔示意图
图3.2.1.2 腔内束宽示意图
[www,wthetaL0,FlagRez]=Rez4mThick(lambda,RezPara,str)
|
3.2.2 定距离求曲率
实际应用中常需要设计紧凑型激光器,需在狭小空间放置腔镜。甚至,直接对晶体端面进行处理,使最终构成谐振腔能极大节省空间,达到激光器小型化的目的。
详见脚本文件Atest_Rez4mThickxxD2Rho.m。
3.2.3 定曲率求距离
实际应用中,常常已经制备了若干曲率半径已知的腔镜,通过不同的组合搭配使得激光器拥有最佳的性能。
详见脚本文件Atest_Rez4mThickxxRho2D.m。
3.2.4 腔内聚焦光束的设计
激光谐振腔内为实现非线性变化而需要高密度激光时,则需要在非线性晶体内形成光腰。设计要求增益介质处的振荡光斑较大,以实现较好的光束质量;非线性晶体中心为振荡光斑的光腰,且其大小满足需求。
图3.2.4.1 腔内聚焦光束设计示意图
脚本文件Atest_Rez7mThickxxFocusFDRhoxxx.m通过暴力求解得出一些信息,但耗时长,且计算出的腔型也比较敏感。
下面介绍上述需求的另一种设计思路。
步骤1:
设计一个不含非线性晶体及其他变换元件的光学谐振腔,该谐振腔尽可能对热焦距变换不敏感。
步骤2:
从该谐振腔某处插入变换元件,使得原谐振腔的光束恰能聚焦在非线性晶体中心,且光斑大小满足预定要求。(特别地,若是插入4 f系统则入射与出射光束不变,但却浪费了空间。其部分功能设计、实现见脚本文件Atest_Compensation.m)
步骤3:
从非线性晶体另一端插入透镜,并使得其经腔镜反射后能自再现。(部分功能设计、实现见脚本文件Atest_fXXMm.m)
3.3 行波谐振腔
3.3.1 两个厚透镜晶体加透镜的谐振腔
使用“G参数等价腔”相关内容,编写具体函数Rez4mThickRing。
图3.3.1.1 谐振腔示意图
图3.3.1.2 谐振腔腔内束宽示意图(从输出镜展开)
|
第四部分 总结与致谢
文章描述了ABCDRez代码包的基础理论、功能及应用,读者可以适当修改以适应实际需求。本人对非稳腔涉猎不足,ABCDRez代码包中并未涉及非稳腔(Unstable Resonator)的设计与应用。
行笔匆匆,难免纰漏与错误,望请批评指证!
如果读者有更多关于非稳腔的知识也欢迎共同交流学习!
在此感谢前辈们的辛勤劳动所取的成果!
在此感谢读者的阅读,希望文章对你有所帮助!
%% 版本信息
% 作者: Quincy Howard
% 联系方式: quincy.hd@qq.com
% 文件信息更新平台为 GitHub、CSDN博客
% 若使用请注明来源
% 最后编辑于 2024 年 07 月 10 日
激光光束传输与谐振腔仿真ABCDRez
https://download.csdn.net/download/qq_42712244/89533054