转载请注明出处,部分内容引自banananana大神的博客
别说你不知道什么是树╮(─▽─)╭(帮你百度一下)
前置知识: dfs d f s 序 LCA L C A 线段树
先来回顾两个问题:
1,将树从 x x 到结点最短路径上所有节点的值都加上 z z
这也是个模板题了吧
我们很容易想到,树上差分可以以的优秀复杂度解决这个问题
2,求树从x到y结点最短路径上所有节点的值之和
lca大水题,我们又很容易地想到, dfs d f s O(n) O ( n ) 预处理每个节点的 dis d i s (即到根节点的最短路径长度)
然后对于每个询问,求出x,y两点的lca,利用lca的性质 distance(x,y)=dis(x)+dis(y)−2∗dis(lca) d i s t a n c e ( x , y ) = d i s ( x ) + d i s ( y ) − 2 ∗ d i s ( l c a ) 求出结果
时间复杂度 O(mlogn+n) O ( m l o g n + n )
现在来思考一个 bug b u g :
如果刚才的两个问题结合起来,成为一道题的两种操作呢?
刚才的方法显然就不够优秀了(每次询问之前要跑 dfs d f s 更新 dis d i s )
树链剖分华丽登场
树剖是通过轻重边剖分将树分割成多条链,然后利用数据结构来维护这些链(本质上是一种优化暴力)
首先明确概念:
重儿子:父亲节点的所有儿子中子树结点数目最多( size s i z e 最大)的结点;
轻儿子:父亲节点中除了重儿子以外的儿子;
重边:父亲结点和重儿子连成的边;
轻边:父亲节点和轻儿子连成的边;
重链:由多条重边连接而成的路径;
轻链:由多条轻边连接而成的路径;
比如上面这幅图中,用黑线连接的结点都是重结点,其余均是轻结点,
2-11就是重链,2-5就是轻链,用红点标记的就是该结点所在重链的起点,也就是下文提到的 top t o p 结点,
还有每条边的值其实是进行 dfs d f s 时的执行序号。
变量声明:
const int maxn=1e5+10;
struct edge{
int next,to;
}e[2*maxn];
struct Node{
int sum,lazy,l,r,ls,rs;
}node[2*maxn];
int rt,n,m,r,a[maxn],cnt,head[maxn],f[maxn],d[maxn],size[maxn],son[maxn],rk[maxn],top[maxn],id[maxn];
名称 |
f[u] f [ u ] |
d[u] d [ u ] |
size[u] s i z e [ u ] |
son[u] s o n [ u ] |
rk[u] r k [ u ] |
top[u] t o p [ u ] |
id[u] i d [ u ] |
我们要做的就是(树链剖分的实现):
1,对于一个点我们首先求出它所在的子树大小,找到它的重儿子(即处理出 size,son s i z e , s o n 数组),
解释:比如说点1,它有三个儿子2,3,4
2所在子树的大小是5
3所在子树的大小是2
4所在子树的大小是6
那么1的重儿子是4
ps:如果一个点的多个儿子所在子树大小相等且最大
那随便找一个当做它的重儿子就好了
叶节点没有重儿子,非叶节点有且只有一个重儿子
2,在 dfs d f s 过程中顺便记录其父亲以及深度(即处理出 f,d f , d 数组),操作 1,2 1 , 2 可以通过一遍 dfs d f s 完成
void dfs1(int u,int fa,int depth) //当前节点、父节点、层次深度
{
f[u]=fa;
d[u]=depth;
size[u]=1; //这个点本身size=1
for(int i=head[u];i;i=e[i].next)
{
int v=e[i].to;
if(v==fa)
continue;
dfs1(v,u,depth+1); //层次深度+1
size[u]+=size[v]; //子节点的size已被处理,用它来更新父节点的size
if(size[v]>size[son[u]])
son[u]=v; //选取size最大的作为重儿子
}
}
//进入
dfs1(root,0,1);
dfs
d
f
s
跑完大概是这样的,大家可以手动模拟一下
3,第二遍 dfs d f s ,然后连接重链,同时标记每一个节点的 dfs d f s 序,并且为了用数据结构来维护重链,我们在 dfs d f s 时保证一条重链上各个节点 dfs d f s 序连续(即处理出数组 top,id,rk t o p , i d , r k )
void dfs2(int u,int t) //当前节点、重链顶端
{
top[u]=t;
id[u]=++cnt; //标记dfs序
rk[cnt]=u; //序号cnt对应节点u
if(!son[u])
return;
dfs2(son[u],t);
/*我们选择优先进入重儿子来保证一条重链上各个节点dfs序连续,
一个点和它的重儿子处于同一条重链,所以重儿子所在重链的顶端还是t*/
for(int i=head[u];i;i=e[i].next)
{
int v=e[i].to;
if(v!=son[u]&&v!=f[u])
dfs2(v,v); //一个点位于轻链底端,那么它的top必然是它本身
}
}
dfs
d
f
s
跑完大概是这样的,大家可以手动模拟一下
4,两遍 dfs d f s 就是树链剖分的主要处理,通过 dfs d f s 我们已经保证一条重链上各个节点 dfs d f s 序连续,那么可以想到,我们可以通过数据结构(以线段树为例)来维护一条重链的信息
回顾上文的那个题目,修改和查询操作原理是类似的,以查询操作为例,其实就是个 LCA L C A ,不过这里使用了 top t o p 来进行加速,因为 top t o p 可以直接跳转到该重链的起始结点,轻链没有起始结点之说,他们的 top t o p 就是自己。需要注意的是,每次循环只能跳一次,并且让结点深的那个来跳到 top t o p 的位置,避免两个一起跳从而插肩而过。
int sum(int x,int y)
{
int ans=0,fx=top[x],fy=top[y];
while(fx!=fy) //两点不在同一条重链
{
if(d[fx]>=d[fy])
{
ans+=query(id[fx],id[x],rt); //线段树区间求和,处理这条重链的贡献
x=f[fx],fx=top[x]; //将x设置成原链头的父亲结点,走轻边,继续循环
}
else
{
ans+=query(id[fy],id[y],rt);
y=f[fy],fy=top[y];
}
}
//循环结束,两点位于同一重链上,但两点不一定为同一点,所以我们还要统计这两点之间的贡献
if(id[x]<=id[y])
ans+=query(id[x],id[y],rt);
else
ans+=query(id[y],id[x],rt);
return ans;
}
大家如果明白了树链剖分,也应该有举一反三的能力(反正我没有),修改和
LCA
L
C
A
就留给大家自己完成了
5,树链剖分的时间复杂度
树链剖分的两个性质:
1,如果 (u,v) ( u , v ) 是一条轻边,那么 size(v)<size(u)/2 s i z e ( v ) < s i z e ( u ) / 2 ;
2,从根结点到任意结点的路所经过的轻重链的个数必定都小于 logn l o g n ;
可以证明,树链剖分的时间复杂度为 O(nlogn) O ( n l o g n )
几道例题:
1,树链剖分模板
就是刚才讲的
上代码:
#include<iostream>
#include<cstdio>
#define int long long
using namespace std;
const int maxn=1e5+10;
struct edge{
int next,to;
}e[2*maxn];
struct Node{
int sum,lazy,l,r,ls,rs;
}node[2*maxn];
int rt,n,m,r,p,a[maxn],cnt,head[maxn],f[maxn],d[maxn],size[maxn],son[maxn],rk[maxn],top[maxn],id[maxn];
int mod(int a,int b)
{
return (a+b)%p;
}
void add_edge(int x,int y)
{
e[++cnt].next=head[x];
e[cnt].to=y;
head[x]=cnt;
}
void dfs1(int u,int fa,int depth)
{
f[u]=fa;
d[u]=depth;
size[u]=1;
for(int i=head[u];i;i=e[i].next)
{
int v=e[i].to;
if(v==fa)
continue;
dfs1(v,u,depth+1);
size[u]+=size[v];
if(size[v]>size[son[u]])
son[u]=v;
}
}
void dfs2(int u,int t)
{
top[u]=t;
id[u]=++cnt;
rk[cnt]=u;
if(!son[u])
return;
dfs2(son[u],t);
for(int i=head[u];i;i=e[i].next)
{
int v=e[i].to;
if(v!=son[u]&&v!=f[u])
dfs2(v,v);
}
}
void pushup(int x)
{
node[x].sum=(node[node[x].ls].sum+node[node[x].rs].sum+node[x].lazy*(node[x].r-node[x].l+1))%p;
}
void build(int li,int ri,int cur)
{
if(li==ri)
{
node[cur].l=node[cur].r=li;
node[cur].sum=a[rk[li]];
return;
}
int mid=(li+ri)>>1;
node[cur].ls=cnt++;
node[cur].rs=cnt++;
build(li,mid,node[cur].ls);
build(mid+1,ri,node[cur].rs);
node[cur].l=node[node[cur].ls].l;
node[cur].r=node[node[cur].rs].r;
pushup(cur);
}
void update(int li,int ri,int c,int cur)
{
if(li<=node[cur].l&&node[cur].r<=ri)
{
node[cur].sum=mod(node[cur].sum,c*(node[cur].r-node[cur].l+1));
node[cur].lazy=mod(node[cur].lazy,c);
return;
}
int mid=(node[cur].l+node[cur].r)>>1;
if(li<=mid)
update(li,ri,c,node[cur].ls);
if(mid<ri)
update(li,ri,c,node[cur].rs);
pushup(cur);
}
int query(int li,int ri,int cur)
{
if(li<=node[cur].l&&node[cur].r<=ri)
return node[cur].sum;
int tot=node[cur].lazy*(min(node[cur].r,ri)-max(node[cur].l,li)+1)%p;
int mid=(node[cur].l+node[cur].r)>>1;
if(li<=mid)
tot=mod(tot,query(li,ri,node[cur].ls));
if(mid<ri)
tot=mod(tot,query(li,ri,node[cur].rs));
return tot%p;
}
int sum(int x,int y)
{
int ans=0;
int fx=top[x],fy=top[y];
while(fx!=fy)
{
if(d[fx]>=d[fy])
{
ans=mod(ans,query(id[fx],id[x],rt));
x=f[fx],fx=top[x];
}
else
{
ans=mod(ans,query(id[fy],id[y],rt));
y=f[fy],fy=top[y];
}
}
if(id[x]<=id[y])
ans=mod(ans,query(id[x],id[y],rt));
else
ans=mod(ans,query(id[y],id[x],rt));
return ans%p;
}
void updates(int x,int y,int c)
{
int fx=top[x],fy=top[y];
while(fx!=fy)
{
if(d[fx]>=d[fy])
{
update(id[fx],id[x],c,rt);
x=f[fx],fx=top[x];
}
else
{
update(id[fy],id[y],c,rt);
y=f[fy],fy=top[y];
}
}
if(id[x]<=id[y])
update(id[x],id[y],c,rt);
else
update(id[y],id[x],c,rt);
}
signed main()
{
scanf("%d%d%d%d",&n,&m,&r,&p);
for(int i=1;i<=n;i++)
scanf("%d",&a[i]);
for(int i=1;i<n;i++)
{
int x,y;
scanf("%d%d",&x,&y);
add_edge(x,y);
add_edge(y,x);
}
cnt=0;
dfs1(r,0,1);
dfs2(r,r);
cnt=0;
rt=cnt++;
build(1,n,rt);
for(int i=1;i<=m;i++)
{
int op,x,y,z;
scanf("%lld",&op);
if(op==1)
{
scanf("%lld%lld%lld",&x,&y,&z);
updates(x,y,z);
}
else if(op==2)
{
scanf("%lld%lld",&x,&y);
printf("%lld\n",sum(x,y));
}
else if(op==3)
{
scanf("%lld%lld",&x,&z);
//子树也有连续区间的性质
update(id[x],id[x]+size[x]-1,z,rt);
}
else if(op==4)
{
scanf("%lld",&x);
printf("%lld\n",query(id[x],id[x]+size[x]-1,rt));
}
}
return 0;
}
2, [NOI2015] [ N O I 2015 ] 软件包管理器
观察到题目要求支持两种操作
1, install i n s t a l l x x :表示安装软件包
2, uninstall u n i n s t a l l x x :表示卸载软件包
对于操作一,我们可以统计 x x 到根节点未安装的软件包的个数,然后区间修改为已安装
对于操作二,我们可以统计所在子树已安装软件包的个数,然后将子树修改为未安装
上代码:
#include<iostream>
#include<cstdio>
#define int long long
using namespace std;
const int maxn=1e5+10;
struct edge{
int next,to;
}e[2*maxn];
struct Node{
int l,r,ls,rs,sum,lazy;
}node[2*maxn];
int rt,n,m,cnt,head[maxn];
int f[maxn],d[maxn],size[maxn],son[maxn],rk[maxn],top[maxn],tid[maxn];
int readn()
{
int x=0;
char ch=getchar();
while(ch<'0'||ch>'9')
ch=getchar();
while(ch>='0'&&ch<='9')
{
x=(x<<1)+(x<<3)+ch-'0';
ch=getchar();
}
return x;
}
void add_edge(int x,int y)
{
e[++cnt].next=head[x];
e[cnt].to=y;
head[x]=cnt;
}
void dfs1(int u,int fa,int depth)
{
f[u]=fa;
d[u]=depth;
size[u]=1;
for(int i=head[u];i;i=e[i].next)
{
int v=e[i].to;
if(v==fa)
continue;
dfs1(v,u,depth+1);
size[u]+=size[v];
if(size[v]>size[son[u]]||!son[u])
son[u]=v;
}
}
void dfs2(int u,int t)
{
top[u]=t;
tid[u]=++cnt;
rk[cnt]=u;
if(!son[u])
return;
dfs2(son[u],t);
for(int i=head[u];i;i=e[i].next)
{
int v=e[i].to;
if(v!=son[u]&&v!=f[u])
dfs2(v,v);
}
}
void pushup(int x)
{
int lson=node[x].ls,rson=node[x].rs;
node[x].sum=node[lson].sum+node[rson].sum;
node[x].l=node[lson].l;
node[x].r=node[rson].r;
}
void build(int li,int ri,int cur)
{
if(li==ri)
{
node[cur].ls=node[cur].rs=node[cur].lazy=-1;
node[cur].l=node[cur].r=li;
return;
}
int mid=(li+ri)>>1;
node[cur].ls=cnt++;
node[cur].rs=cnt++;
build(li,mid,node[cur].ls);
build(mid+1,ri,node[cur].rs);
pushup(cur);
}
void pushdown(int x)
{
int lson=node[x].ls,rson=node[x].rs;
node[lson].sum=node[x].lazy*(node[lson].r-node[lson].l+1);
node[rson].sum=node[x].lazy*(node[rson].r-node[rson].l+1);
node[lson].lazy=node[x].lazy;
node[rson].lazy=node[x].lazy;
node[x].lazy=-1;
}
void update(int li,int ri,int c,int cur)
{
if(li<=node[cur].l&&node[cur].r<=ri)
{
node[cur].sum=c*(node[cur].r-node[cur].l+1);
node[cur].lazy=c;
return;
}
if(node[cur].lazy!=-1)
pushdown(cur);
int mid=(node[cur].l+node[cur].r)>>1;
if(li<=mid)
update(li,ri,c,node[cur].ls);
if(mid<ri)
update(li,ri,c,node[cur].rs);
pushup(cur);
}
int query(int li,int ri,int cur)
{
if(li<=node[cur].l&&node[cur].r<=ri)
return node[cur].sum;
if(node[cur].lazy!=-1)
pushdown(cur);
int tot=0;
int mid=(node[cur].l+node[cur].r)>>1;
if(li<=mid)
tot+=query(li,ri,node[cur].ls);
if(mid<ri)
tot+=query(li,ri,node[cur].rs);
return tot;
}
int sum(int x)
{
int ans=0;
int fx=top[x];
while(fx)
{
ans+=tid[x]-tid[fx]-query(tid[fx],tid[x],rt)+1;
update(tid[fx],tid[x],1,rt);
x=f[fx];
fx=top[x];
}
ans+=tid[x]-tid[0]-query(tid[0],tid[x],rt)+1;
update(tid[0],tid[x],1,rt);
return ans;
}
signed main()
{
n=readn();
for(int i=1;i<n;i++)
{
int x=readn();
add_edge(x,i);
add_edge(i,x);
}
cnt=0;
dfs1(0,-1,1);
dfs2(0,0);
cnt=0;
rt=cnt++;
build(1,n,rt);
m=readn();
for(int i=1;i<=m;i++)
{
int x;
string op;
cin>>op;
x=readn();
if(op=="install")
printf("%lld\n",sum(x));
else if(op=="uninstall")
{
printf("%lld\n",query(tid[x],tid[x]+size[x]-1,rt));
update(tid[x],tid[x]+size[x]-1,0,rt);
}
}
return 0;
}
3, [SDOI2011] [ S D O I 2011 ] 染色
有一些思维含量的题
统计颜色段数量时不能简单地区间加法
线段树还应维护区间最左颜色和区间最右颜色
合并时
如果 S(l,k) S ( l , k ) 的右端与 S(k+1,r) S ( k + 1 , r ) 的左端颜色相同,那么 S(l,r)=S(l,k)+S(k+1,r)−1 S ( l , r ) = S ( l , k ) + S ( k + 1 , r ) − 1 (减去重复的那一个)
否则 S(l,r)=S(l,k)+S(k+1,r) S ( l , r ) = S ( l , k ) + S ( k + 1 , r ) 正常合并