天池比赛二手车预测Task3-特征工程

声明:本人是小白,第一次接触机器学习大型项目,感谢天池Datawhale提供学习机会,由于刚入门,能力有限,故只能跟着课程照猫画虎复现代码,内容完全尊重原意。Datawhale天池

三、特征工程

3.1 特征工程目标

对于特征进行进一步分析,并对于数据进行处理

完成对于特征工程的分析

3.2 特征工程内容

1.异常处理:

  • 通过箱线图(或 3-Sigma)分析删除异常值;
  • BOX-COX 转换(处理有偏分布);
  • 长尾截断;

2.特征归一化/标准化:

  • 标准化(转换为标准正态分布);
  • 归一化(抓换到 [0,1] 区间);
  • 针对幂律分布,可以采用公式: log(1+x1+median)

3.数据分桶:

  • 等频分桶;
  • 等距分桶;
  • Best-KS 分桶(类似利用基尼指数进行二分类);
  • 卡方分桶;

4.缺失值处理:

  • 不处理(针对类似 XGBoost 等树模型);
  • 删除(缺失数据太多);
  • 插值补全,包括均值/中位数/众数/建模预测/多重插补/压缩感知补全/矩阵补全等;
  • 分箱,缺失值一个箱;

5.特征构造:

  • 构造统计量特征,报告计数、求和、比例、标准差等;
  • 时间特征,包括相对时间和绝对时间,节假日,双休日等;
  • 地理信息,包括分箱,分布编码等方法;
  • 非线性变换,包括 log/ 平方/ 根号等;
  • 特征组合,特征交叉;
  • 仁者见仁,智者见智。

6.特征筛选

  • 过滤式(filter):先对数据进行特征选择,然后在训练学习器,常见的方法有 Relief/方差选择发/相关系数法/卡方检验法/互信息法;
  • 包裹式(wrapper):直接把最终将要使用的学习器的性能作为特征子集的评价准则,常见方法有 LVM(Las Vegas Wrapper) ;
  • 嵌入式(embedding):结合过滤式和包裹式,学习器训练过程中自动进行了特征选择,常见的有 lasso 回归;

7.降维

  • PCA/ LDA/ ICA;
  • 特征选择也是一种降维。

3.3代码示例

3.3.0 导入数据

import pandas as pd
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
from operator import itemgetter

# %matplotlib.inline

# 3.3.0 导入数据
Train_data = pd.read_csv('used_car_train_20200313.csv',sep=' ')
Test_data = pd.read_csv('used_car_testA_20200313.csv',sep=' ')
# print(Train_data.shape)
# print(Train_data.head())
# print(Train_data.info())
# print(Train_data.columns)
# print(Test_data.shape)
# print(Test_data.head())
# print(Test_data.info())
# print(Test_data.columns)

3.3.1 删除异常值

# 3.3.1 删除异常值
# 这里封装了一个异常值处理的代码,可以随便调用
def outliers_proc(data,col_name,scale=3):
    """
    用于清洗异常值,默认用box_plot(scale=3)进行清洗
    :param data: 接收pandas数据格式
    :param col_name: pandas列名
    :param scale: 尺度
    :return:
    """
    def box_plot_outliers(data_ser,box_scale):
        """
        利用箱线图去除异常值
        :param data_ser: 接收pandas.Series数据格式
        :param box_scale: 箱线图尺度
        :return:
        """
        iqr = box_scale * (data_ser.quantile(0.75) - data_ser.quantile(0.25))
        val_low = data_ser.quantile(0.25) - iqr
        val_up = data_ser.quantile(0.75) + iqr
        rule_low = (data_ser < val_low)
        rule_up = (data_ser > val_up)
        return (rule_low,rule_up),(val_low,val_up)
    data_n = data.copy()
    data_series = data_n[col_name]
    rule,value = box_plot_outliers(data_series,box_scale=scale)
    index = np.arange(data_series.shape[0])[rule[0] | rule[1]]
    print('Delete number is:{}'.format(len(index)))
    data_n = data_n.drop(index)
    data_n.reset_index(drop=True,inplace=True)
    print('Now column number is:{}'.format(data_n.shape[0]))
    index_low = np.arange(data_series.shape[0])[rule[0]]
    outliers = data_series.iloc[index_low]
    print('Description of data less than the lower bound is:')
    print(pd.Series(outliers).describe())
    index_up = np.arange(data_series.shape[0])[rule[1]]
    outliers = data_series.iloc[index_up]
    print('Description of data larger than the upper bound is:')
    print(pd.Series(outliers).describe())

    fig,ax = plt.subplots(1,2,figsize=(10,7))
    sns.boxplot(y=data[col_name],data=data,palette='Set1',ax=ax[0])
    sns.boxplot(y=data_n[col_name],data=data_n,palette='Set1',ax=ax[1])
    plt.show()
    return data_n
# 以power举例,删掉一些异常数据
# 删不删自己判断
# 但是要注意test数据不能删
Train_data = outliers_proc(Train_data,'power',scale=3)

在这里插入图片描述

Delete number is:963
Now column number is:149037
Description of data less than the lower bound is:
count 0.0
mean NaN
std NaN
min NaN
25% NaN
50% NaN
75% NaN
max NaN
Name: power, dtype: float64
Description of data larger than the upper bound is:
count 963.000000
mean 846.836968
std 1929.418081
min 376.000000
25% 400.000000
50% 436.000000
75% 514.000000
max 19312.000000
Name: power, dtype: float64
Process finished with exit code 0

3.3.2 特征构造

# 3.3.2 训练集和测试集放在一起方便构造特征
Train_data['train'] = 1
Test_data['train'] = 0
data = pd.concat([Train_data,Test_data],ignore_index=True)
# 使用时间:data['creatDate'] - data['regDate'],反应汽车使用时间,一般来说价格与使用时间成反比
# 不过要注意,数据里有时间出错的格式,所以我们需要errors='coerce'
data['used_time'] = (pd.to_datetime(data['creatDate'],format='%Y%m%d',errors='coerce') -
                     pd.to_datetime(data['regDate'],format='%Y%m%d',errors='coerce')).dt.days
# 看一下空数据,有15k个样本的时间是有问题的,我们可以选择删除,也可以选择放着
# 但是这里不建议删除,因为删除缺失数据占总样本量过大:7.5%
# 我们可以先放着,因为如果我们XGBoost之类的决策树,其本身就能处理缺失值,所以可以不用管
print(data['used_time'].isnull().sum())

15101

# 从邮编中提取城市信息,相当于加入了先验知识
data['city'] = data['regionCode'].apply(lambda x:str(x)[:-3])
data = data
print(data.head())
# 计算某品牌的销售统计量,我们还可以计算其他特征的统计量
# 这里要以train的数据计算统计量
Train_gb = Train_data.groupby('brand')
# print(Train_gb.head())
all_info = {}
for kind,kind_data in Train_gb:
    info = {}
    kind_data = kind_data[kind_data['price'] > 0]
    info['brand_amount'] = len(kind_data)
    info['brand_price_max'] = kind_data.price.max()
    info['brand_price_median'] = kind_data.price.median()
    info['brand_price_min'] = kind_data.price.min()
    info['brand_price_sum'] = kind_data.price.sum()
    info['brand_price_std'] = kind_data.price.std()
    info['brand_price_average'] = round(kind_data.price.sum() /(len(kind_data) + 1),2)
    all_info[kind] = info
brand_fe = pd.DataFrame(all_info).T.reset_index().rename(columns={'index':'brand'})
data = data.merge(brand_fe,how='left',on='brand')
# 数据分桶 以power为例
# 这时候我们的缺失值也进桶了
# 为什么要做数据分桶呢:
# 1.离散后稀疏向量内积乘法运算速度更快,计算结果也方便存储,容易扩展
# 2.离散后的特征对异常值更具鲁棒性,如age>30 为 1 否则为 0,对于年龄为 200 的也不会对模型造成很大的干扰;
# 3. LR 属于广义线性模型,表达能力有限,经过离散化后,每个变量有单独的权重,这相当于引入了非线性,能够提升模型的表达能力,加大拟合;
# 4. 离散后特征可以进行特征交叉,提升表达能力,由 M+N 个变量编程 M*N 个变量,进一步引入非线形,提升了表达能力;
# 5. 特征离散后模型更稳定,如用户年龄区间,不会因为用户年龄长了一岁就变化
#
# 当然还有很多原因,LightGBM 在改进 XGBoost 时就增加了数据分桶,增强了模型的泛化性
bin = [i*10 for i in range(31)]
data['power_bin'] = pd.cut(data['power'],bin,labels=False)
print(data[['power_bin','power']].head())

power_bin power
0 5.0 60
1 NaN 0
2 16.0 163
3 19.0 193
4 6.0 68

# 删除不需要的数据
data = data.drop(['creatDate','regDate','regionCode'],axis=1)
print(data.shape)
print(data.columns)

(199037, 39)
Index([‘SaleID’, ‘name’, ‘model’, ‘brand’, ‘bodyType’, ‘fuelType’, ‘gearbox’, ‘power’, ‘kilometer’, ‘notRepairedDamage’, ‘seller’, ‘offerType’,‘price’, ‘v_0’, ‘v_1’, ‘v_2’, ‘v_3’, ‘v_4’, ‘v_5’, ‘v_6’, ‘v_7’, ‘v_8’,‘v_9’, ‘v_10’, ‘v_11’, ‘v_12’, ‘v_13’, ‘v_14’, ‘train’, ‘used_time’,‘city’, ‘brand_amount’,‘brand_price_max’, ‘brand_price_median’,‘brand_price_min’, ‘brand_price_sum’, ‘brand_price_std’,‘brand_price_average’, ‘power_bin’],dtype=‘object’)

# 目前的数据已经可以给树模型使用了,所以我们导出一下
data.to_csv('data_for_tree.csv',index=0)
# 我们可以再构造一份特征给LR NN之类的模型用
# 之所以分开构造是因为,不同模型对数据集的要求不同
# 我们看一下数据分布:
data['power'].plot.hist()
plt.show()

在这里插入图片描述

# 我们刚刚已经对train进行异常值处理了,但是现在还有这么奇怪的分布是因为test中的power异常值
# 所以我们其实刚刚train中的power异常值不删为好,可以用长尾分布截断来代替
Train_data['power'].plot.hist()
plt.show()

在这里插入图片描述

# 我们对其取log,在做归一化
# from sklearn import preprocessing
min_max_scaler = preprocessing.MinMaxScaler()
data['power'] = np.log(data['power'] + 1)
data['power'] = ((data['power'] - np.min(data)) / (np.max(data['power']) - np.min(data['power'])))
data['power'].plot.hist()
plt.show()

在这里插入图片描述

# km的比较正常,应该是已经做过分桶了
data['kilometer'].plot.hist()
plt.show()

在这里插入图片描述

# 所以我们可以直接做归一化
data['kilometer'] = ((data['kilometer'] - np.min(data['kilometer'])) /
                     (np.max(data['kilometer']) - np.min(data['kilometer'])))
data['kilometer'].plot.hist()
plt.show()

在这里插入图片描述

# 除此之外 还有我们刚刚构造的统计量特征:
# 'brand_amount', 'brand_price_average', 'brand_price_max',
# 'brand_price_median', 'brand_price_min', 'brand_price_std',
# 'brand_price_sum'
# 这里不再一一举例分析了,直接做变换,
def max_min(x):
    return (x - np.min(x)) / (np.max(x) - np.min(x))

data['brand_amount'] = ((data['brand_amount'] - np.min(data['brand_amount'])) /
                        (np.max(data['brand_amount']) - np.min(data['brand_amount'])))
data['brand_price_average'] = ((data['brand_price_average'] - np.min(data['brand_price_average'])) /
                               (np.max(data['brand_price_average']) - np.min(data['brand_price_average'])))
data['brand_price_max'] = ((data['brand_price_max'] - np.min(data['brand_price_max'])) /
                           (np.max(data['brand_price_max']) - np.min(data['brand_price_max'])))
data['brand_price_median'] = ((data['brand_price_median'] - np.min(data['brand_price_median'])) /
                              (np.max(data['brand_price_median']) - np.min(data['brand_price_median'])))
data['brand_price_min'] = ((data['brand_price_min'] - np.min(data['brand_price_min'])) /
                           (np.max(data['brand_price_min']) - np.min(data['brand_price_min'])))
data['brand_price_std'] = ((data['brand_price_std'] - np.min(data['brand_price_std'])) /
                           (np.max(data['brand_price_std']) - np.min(data['brand_price_std'])))
data['brand_price_sum'] = ((data['brand_price_sum'] - np.min(data['brand_price_sum'])) /
                           (np.max(data['brand_price_sum']) - np.min(data['brand_price_sum'])))

# 对类别特征进行OneEncoder
data = pd.get_dummies(data,columns=['model','brand','bodyType','fuelType',
                                    'gearbox','notRepairedDamage','power_bin'])
print(data.shape)
print(data.columns)

(199037, 370)
Index([‘SaleID’, ‘name’, ‘power’, ‘kilometer’, ‘seller’, ‘offerType’, ‘price’,
‘v_0’, ‘v_1’, ‘v_2’,

‘power_bin_20.0’, ‘power_bin_21.0’, ‘power_bin_22.0’, ‘power_bin_23.0’,
‘power_bin_24.0’, ‘power_bin_25.0’, ‘power_bin_26.0’, ‘power_bin_27.0’,
‘power_bin_28.0’, ‘power_bin_29.0’],
dtype=‘object’, length=370)
Process finished with exit code 0

# 这份数据可以给LR用
data.to_csv('data_for_lr.csv',index=0)

3.3.3 特征筛选

  1. 过滤式
# 相关性分析
print(data['power'].corr(data['price'],method='spearman'))
print(data['kilometer'].corr(data['price'],method='spearman'))
print(data['brand_amount'].corr(data['price'], method='spearman'))
print(data['brand_price_average'].corr(data['price'], method='spearman'))
print(data['brand_price_max'].corr(data['price'], method='spearman'))
print(data['brand_price_median'].corr(data['price'], method='spearman'))

0.5728285196051496
-0.4082569701616764
0.058156610025581514
0.3834909576057687
0.259066833880992
0.38691042393409447

# 当然也可以直接看图
data_numeric = data[['power','kilometer','brand_amount','brand_price_average',
                     'brand_price_max','brand_price_median']]
correlation = data_numeric.corr()
f,ax = plt.subplots(figsize = (7,7))
plt.title('Correlation of Numeric Features with Price',y=1,size=16)
plt.title('Correlation of Numeric Features with Price',y=1,size=16)
sns.heatmap(correlation,square=True,vmax=0.8)
plt.show()

在这里插入图片描述

  1. 包裹式
sfs = SFS(LinearRegression(),
          k_features=10,
          forward=True,
          floating=False,
          scoring='r2',
          cv=0)
x = data.drop(['price'],axis=1)
x = x.fillna(0)
y = data['price']
sfs.fit(x,y)
sfs.k_feature_names_

# 画出来,可以看到边际效益
fig1 = plot_sfs(sfs.get_metric_dict(),kind='std_dev')
plt.grid()
plt.show()
#!/user/bin/env python
# -*- coding:utf-8 -*-
#@Time  : 2020/3/25 10:12
#@Author: fangyuan
#@File  : 二手汽车特征工程.py

import pandas as pd
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
from operator import itemgetter

from sklearn import preprocessing

from mlxtend.feature_selection import SequentialFeatureSelector as SFS
from sklearn.linear_model import LinearRegression

from mlxtend.plotting import plot_sequential_feature_selection as plot_sfs

# %matplotlib.inline

# 3.3.0 导入数据
Train_data = pd.read_csv('used_car_train_20200313.csv',sep=' ')
Test_data = pd.read_csv('used_car_testA_20200313.csv',sep=' ')
# print(Train_data.shape)
# print(Train_data.head())
# print(Train_data.info())
# print(Train_data.columns)
# print(Test_data.shape)
# print(Test_data.head())
# print(Test_data.info())
# print(Test_data.columns)

# 3.3.1 删除异常值
# 这里封装了一个异常值处理的代码,可以随便调用
def outliers_proc(data,col_name,scale=3):
    """
    用于清洗异常值,默认用box_plot(scale=3)进行清洗
    :param data: 接收pandas数据格式
    :param col_name: pandas列名
    :param scale: 尺度
    :return:
    """
    def box_plot_outliers(data_ser,box_scale):
        """
        利用箱线图去除异常值
        :param data_ser: 接收pandas.Series数据格式
        :param box_scale: 箱线图尺度
        :return:
        """
        iqr = box_scale * (data_ser.quantile(0.75) - data_ser.quantile(0.25))
        val_low = data_ser.quantile(0.25) - iqr
        val_up = data_ser.quantile(0.75) + iqr
        rule_low = (data_ser < val_low)
        rule_up = (data_ser > val_up)
        return (rule_low,rule_up),(val_low,val_up)
    data_n = data.copy()
    data_series = data_n[col_name]
    rule,value = box_plot_outliers(data_series,box_scale=scale)
    index = np.arange(data_series.shape[0])[rule[0] | rule[1]]
    # print('Delete number is:{}'.format(len(index)))
    data_n = data_n.drop(index)
    data_n.reset_index(drop=True,inplace=True)
    # print('Now column number is:{}'.format(data_n.shape[0]))
    index_low = np.arange(data_series.shape[0])[rule[0]]
    outliers = data_series.iloc[index_low]
    # print('Description of data less than the lower bound is:')
    # print(pd.Series(outliers).describe())
    index_up = np.arange(data_series.shape[0])[rule[1]]
    outliers = data_series.iloc[index_up]
    # print('Description of data larger than the upper bound is:')
    # print(pd.Series(outliers).describe())

    # fig,ax = plt.subplots(1,2,figsize=(10,7))
    # sns.boxplot(y=data[col_name],data=data,palette='Set1',ax=ax[0])
    # sns.boxplot(y=data_n[col_name],data=data_n,palette='Set1',ax=ax[1])
    # plt.show()
    return data_n
# 以power举例,删掉一些异常数据
# 删不删自己判断
# 但是要注意test数据不能删
Train_data = outliers_proc(Train_data,'power',scale=3)


# 3.3.2 训练集和测试集放在一起方便构造特征
Train_data['train'] = 1
Test_data['train'] = 0
data = pd.concat([Train_data,Test_data],ignore_index=True)
# 使用时间:data['creatDate'] - data['regDate'],反应汽车使用时间,一般来说价格与使用时间成反比
# 不过要注意,数据里有时间出错的格式,所以我们需要errors='coerce'
data['used_time'] = (pd.to_datetime(data['creatDate'],format='%Y%m%d',errors='coerce') -
                     pd.to_datetime(data['regDate'],format='%Y%m%d',errors='coerce')).dt.days
# 看一下空数据,有15k个样本的时间是有问题的,我们可以选择删除,也可以选择放着
# 但是这里不建议删除,因为删除缺失数据占总样本量过大:7.5%
# 我们可以先放着,因为如果我们XGBoost之类的决策树,其本身就能处理缺失值,所以可以不用管
# print(data['used_time'].isnull().sum())


# 从邮编中提取城市信息,相当于加入了先验知识
data['city'] = data['regionCode'].apply(lambda x:str(x)[:-3])
data = data
# print(data.head())
# 计算某品牌的销售统计量,我们还可以计算其他特征的统计量
# 这里要以train的数据计算统计量
Train_gb = Train_data.groupby('brand')
# print(Train_gb.head())
all_info = {}
for kind,kind_data in Train_gb:
    info = {}
    kind_data = kind_data[kind_data['price'] > 0]
    info['brand_amount'] = len(kind_data)
    info['brand_price_max'] = kind_data.price.max()
    info['brand_price_median'] = kind_data.price.median()
    info['brand_price_min'] = kind_data.price.min()
    info['brand_price_sum'] = kind_data.price.sum()
    info['brand_price_std'] = kind_data.price.std()
    info['brand_price_average'] = round(kind_data.price.sum() /(len(kind_data) + 1),2)
    all_info[kind] = info
brand_fe = pd.DataFrame(all_info).T.reset_index().rename(columns={'index':'brand'})
data = data.merge(brand_fe,how='left',on='brand')
# 数据分桶 以power为例
# 这时候我们的缺失值也进桶了
# 为什么要做数据分桶呢:
# 1.离散后稀疏向量内积乘法运算速度更快,计算结果也方便存储,容易扩展
# 2.离散后的特征对异常值更具鲁棒性,如age>30 为 1 否则为 0,对于年龄为 200 的也不会对模型造成很大的干扰;
# 3. LR 属于广义线性模型,表达能力有限,经过离散化后,每个变量有单独的权重,这相当于引入了非线性,能够提升模型的表达能力,加大拟合;
# 4. 离散后特征可以进行特征交叉,提升表达能力,由 M+N 个变量编程 M*N 个变量,进一步引入非线形,提升了表达能力;
# 5. 特征离散后模型更稳定,如用户年龄区间,不会因为用户年龄长了一岁就变化
#
# 当然还有很多原因,LightGBM 在改进 XGBoost 时就增加了数据分桶,增强了模型的泛化性
bin = [i*10 for i in range(31)]
data['power_bin'] = pd.cut(data['power'],bin,labels=False)
# print(data[['power_bin','power']].head())


# 删除不需要的数据
data = data.drop(['creatDate','regDate','regionCode'],axis=1)
# print(data.shape)
# print(data.columns)


# 目前的数据已经可以给树模型使用了,所以我们导出一下
data.to_csv('data_for_tree.csv',index=0)
# 我们可以再构造一份特征给LR NN之类的模型用
# 之所以分开构造是因为,不同模型对数据集的要求不同
# 我们看一下数据分布:
# data['power'].plot.hist()
# plt.show()

# 我们刚刚已经对train进行异常值处理了,但是现在还有这么奇怪的分布是因为test中的power异常值
# 所以我们其实刚刚train中的power异常值不删为好,可以用长尾分布截断来代替
# Train_data['power'].plot.hist()
# plt.show()


# 我们对其取log,在做归一化
# from sklearn import preprocessing
min_max_scaler = preprocessing.MinMaxScaler()
data['power'] = np.log(data['power'] + 1)
data['power'] = ((data['power'] - np.min(data['power'])) / (np.max(data['power']) - np.min(data['power'])))
# data['power'].plot.hist()
# plt.show()


# km的比较正常,应该是已经做过分桶了
# data['kilometer'].plot.hist()
# plt.show()


# 所以我们可以直接做归一化
data['kilometer'] = ((data['kilometer'] - np.min(data['kilometer'])) /
                     (np.max(data['kilometer']) - np.min(data['kilometer'])))
# data['kilometer'].plot.hist()
# plt.show()


# 除此之外 还有我们刚刚构造的统计量特征:
# 'brand_amount', 'brand_price_average', 'brand_price_max',
# 'brand_price_median', 'brand_price_min', 'brand_price_std',
# 'brand_price_sum'
# 这里不再一一举例分析了,直接做变换,
def max_min(x):
    return (x - np.min(x)) / (np.max(x) - np.min(x))

data['brand_amount'] = ((data['brand_amount'] - np.min(data['brand_amount'])) /
                        (np.max(data['brand_amount']) - np.min(data['brand_amount'])))
data['brand_price_average'] = ((data['brand_price_average'] - np.min(data['brand_price_average'])) /
                               (np.max(data['brand_price_average']) - np.min(data['brand_price_average'])))
data['brand_price_max'] = ((data['brand_price_max'] - np.min(data['brand_price_max'])) /
                           (np.max(data['brand_price_max']) - np.min(data['brand_price_max'])))
data['brand_price_median'] = ((data['brand_price_median'] - np.min(data['brand_price_median'])) /
                              (np.max(data['brand_price_median']) - np.min(data['brand_price_median'])))
data['brand_price_min'] = ((data['brand_price_min'] - np.min(data['brand_price_min'])) /
                           (np.max(data['brand_price_min']) - np.min(data['brand_price_min'])))
data['brand_price_std'] = ((data['brand_price_std'] - np.min(data['brand_price_std'])) /
                           (np.max(data['brand_price_std']) - np.min(data['brand_price_std'])))
data['brand_price_sum'] = ((data['brand_price_sum'] - np.min(data['brand_price_sum'])) /
                           (np.max(data['brand_price_sum']) - np.min(data['brand_price_sum'])))

# 对类别特征进行OneEncoder
data = pd.get_dummies(data,columns=['model','brand','bodyType','fuelType',
                                    'gearbox','notRepairedDamage','power_bin'])
# print(data.shape)
# print(data.columns)

# 这份数据可以给LR用
data.to_csv('data_for_lr.csv',index=0)



# 相关性分析
# print(data['power'].corr(data['price'],method='spearman'))
# print(data['kilometer'].corr(data['price'],method='spearman'))
# print(data['brand_amount'].corr(data['price'], method='spearman'))
# print(data['brand_price_average'].corr(data['price'], method='spearman'))
# print(data['brand_price_max'].corr(data['price'], method='spearman'))
# print(data['brand_price_median'].corr(data['price'], method='spearman'))

# 当然也可以直接看图
data_numeric = data[['power','kilometer','brand_amount','brand_price_average',
                     'brand_price_max','brand_price_median']]
correlation = data_numeric.corr()
f,ax = plt.subplots(figsize = (7,7))
# plt.title('Correlation of Numeric Features with Price',y=1,size=16)
# plt.title('Correlation of Numeric Features with Price',y=1,size=16)
# sns.heatmap(correlation,square=True,vmax=0.8)
# plt.show()

sfs = SFS(LinearRegression(),
          k_features=10,
          forward=True,
          floating=False,
          scoring='r2',
          cv=0)
x = data.drop(['price'],axis=1)
x = x.fillna(0)
y = data['price']
sfs.fit(x,y)
sfs.k_feature_names_

# 画出来,可以看到边际效益
fig1 = plot_sfs(sfs.get_metric_dict(),kind='std_dev')
plt.grid()
plt.show()
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值