点击上方“小白学视觉”,选择加"星标"或“置顶”
重磅干货,第一时间送达

目标检测是图像处理的重要组成部分。自动驾驶汽车必须检测车道,路面,其他车辆,人,标志和信号等。我们生活在一个动态的世界中,一切都在不断变化。对象检测的应用无处不在。
我们正在研究自动驾驶汽车的深度学习和计算机视觉。特征检测是对象检测的任务之一。那么,什么是特征检测?对于人类,我们了解图案,形状,大小,颜色,长度以及其他可识别物体的物体。它也有点类似于计算机。
特征可以是形状,边缘,长度等任何形式,也可以是所有特征的组合。在我们之前有DeepFake检测的项目,我们使用MSE(均方误差),PSNR(峰值信噪比),SSIM(结构相似性指数)和直方图作为特征从真实图像中识别DeepFake图像。
一个好的算法必须是可重复的和可扩展的。例如,假设目标是从大量图像中检测狗,其中还包含猫和其他动物的图像。

关于特征的表述,它必须是独特的,并且需要在大多数数据中显示。如果我们有大部分与上述两张图片相似的图片,那么这里
使用OpenCV进行对象检测:卡车识别实战

本文介绍了如何利用OpenCV进行对象检测,特别是针对自动驾驶场景中的卡车识别。通过模板匹配技术,结合灰度图像处理,有效地从图像中找到卡车的位置。详细步骤包括图像读取、灰度转换、模板创建及匹配,从而实现目标识别。
最低0.47元/天 解锁文章
897

被折叠的 条评论
为什么被折叠?



