PyTorch 手把手搭建(MNIST)神经网络

点击上方“小白学视觉”,选择加"星标"或“置顶

重磅干货,第一时间送达b99e247fdc04fa0b5ba338db247c4907.png

仅作学术分享,不代表本公众号立场,侵权联系删除

转载于:作者:知乎  摸鱼

地址:https://www.zhihu.com/people/sun-xu-sen-30

01

数据集介绍

本文使用的是PyTorch自带的MNIST数据集,该数据集中为PIL Image,size=28x28。数据存储形式为(data, target),其中data为PIL Image,target该图片表示的数字。如下所示:

(<PIL.Image.Image image mode=L size=28x28 at 0x175EF44F160>, 5)

02

模型搭建

b8332e478f9471d51b401cbcf2f6316b.png
  • input:torch.Size([64, 1, 28, 28])

  • after conv1: torch.Size([64, 32, 26, 26])

  • after conv2: torch.Size([64, 64, 24, 24])

  • after max_pool2d: torch.Size([64, 64, 12, 12])

  • after flatten: torch.Size([64, 9216])

  • after fc1: torch.Size([64, 128])

  • after fc2: torch.Size([64, 10])

  • after log_softmax: torch.Size([64, 10])

由各层的输出结果可以看出,batch_size为64,网络结构图中tensor在各层的变化与输出一致。

2.1 导入库文件

 
 
from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.optim.lr_scheduler import StepLR

2.2 网络结构定义

 
 
class Net(nn.Module):
    def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 32, 3, 1)
self.conv2 = nn.Conv2d(32, 64, 3, 1)
self.dropout1 = nn.Dropout(0.25)
self.dropout2 = nn.Dropout(0.5)
self.fc1 = nn.Linear(9216, 128)
self.fc2 = nn.Linear(128, 10)


    def forward(self, x):
        x = self.conv1(x)
# print("after conv1: {}".format(x.shape))
        x = F.relu(x)
        x = self.conv2(x)
# print("after conv2: {}".format(x.shape))
        x = F.relu(x)
        x = F.max_pool2d(x, 2)
# print("after max_pool2d: {}".format(x.shape))
        x = self.dropout1(x)
        x = torch.flatten(x, 1)
# print("after flatten: {}".format(x.shape))
        x = self.fc1(x)
# print("after fc1: {}".format(x.shape))
        x = F.relu(x)
        x = self.dropout2(x)
        x = self.fc2(x)
# print("after fc2: {}".format(x.shape))
        output = F.log_softmax(x, dim=1)
# print("after log_softmax: {}".format(output.shape))
return output

2.3 transform究竟是干什么的?

相信大家在读取数据集的时候,经常见到下面这段代码

 
 
transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.1307,), (0.3081,))
        ])

别着急,我们一个个来看,首先看transforms.ToTensor()

e7860a3ad80fc57145c6074171896e76.png

简单来说,就是把PIL Image或者 numpy.ndarray类型的数据转化为张量tensor。原来的在[0, 255]的具有(HxWxC)形式的PIL Image或numpy.ndarray数据,被转换为[0.0, 1.0]范围并且shape变为(CxHxW)。

前面我们看到数据集的格式为PIL Image,这个函数就是将之前的PIL Image变为tensor,后续才可以对其进行一系列操作。

再看transforms.Normalize()

7da9bc7f81c47857b1e9770b5e147d4a.png

对一个tensor进行归一化,传入的两个参数为元组形式,分别为mean和std

da098d6c5dfedd9b76d1978ebfb07eaa.png

相当于一个容器,将若干个transforms组合到一起。

2.4 DataLoader

 
 
taet1 = datasets.MNIST('../data', train=True, download=True,
                   transform=transform)
train_loader = torch.utils.data.DataLoader(dataset1, **train_kwargs)

简而言之,DataLoader的作用就是对传入的数据集进行采样sample,返回一个可迭代的对象。注意到前面定义的batch_size为64,那么在这里,每次返回的可迭代对象的size就是64。

2.5 优化器定义

 
 
# 优化器
optimizer = optim.Adadelta(model.parameters(), lr=args.lr)


# 调整学习率
scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma)

其中StepLR是用来调整学习率的,具体的调整策略本文暂且不讨论,在之后的博文中对集中调整学习率的方法统一讨论。在这里只需知道随着epoch的增加,learning rate会改变即可。


03

train

train的流程非常简单,首先设置为train模式,分批次读入数据,优化器梯度置零,数据通过网络,计算损失,反向传播,权重更新。如下

 
 
def train(args, model, device, train_loader, optimizer, epoch):
# 设置为train模式
    model.train()


# 分批次读入数据
for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
# 优化器梯度置零
        optimizer.zero_grad()
# 数据通过网络
        output = model(data)
# 计算损失
        loss = F.nll_loss(output, target)
# 反向传播
        loss.backward()
# 权重更新
        optimizer.step()
if batch_idx % args.log_interval == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
if args.dry_run:
break

04

test

test的流程与train略有不同,首先要设置为test模式,这是要防止改变已训练好的权重。接着在with torch.no_grad()中让数据通过网络,计算损失和预测是否正确即可。如下

 
 
def test(model, device, test_loader):
# 设置为test模式
    model.eval()
    test_loss = 0
    correct = 0
# 不进行计算图的构建,即没有grad_fn属性
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
            test_loss += F.nll_loss(output, target, reduction='sum').item()  # sum up batch loss
            pred = output.argmax(dim=1, keepdim=True)  # get the index of the max log-probability
            correct += pred.eq(target.view_as(pred)).sum().item()


    test_loss /= len(test_loader.dataset)


    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))

05

集成训练测试

 
 
def main():
    # Training settings
    # 声明一个parser
    parser = argparse.ArgumentParser(description='PyTorch MNIST Example')


    # 添加参数
    parser.add_argument('--batch-size', type=int, default=64, metavar='N',
                        help='input batch size for training (default: 64)')
    parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
                        help='input batch size for testing (default: 1000)')
    parser.add_argument('--epochs', type=int, default=14, metavar='N',
                        help='number of epochs to train (default: 14)')
    parser.add_argument('--lr', type=float, default=1.0, metavar='LR',
                        help='learning rate (default: 1.0)')
    parser.add_argument('--gamma', type=float, default=0.7, metavar='M',
                        help='Learning rate step gamma (default: 0.7)')
    parser.add_argument('--no-cuda', action='store_true', default=False,
                        help='disables CUDA training')
    parser.add_argument('--dry-run', action='store_true', default=False,
                        help='quickly check a single pass')
    parser.add_argument('--seed', type=int, default=1, metavar='S',
                        help='random seed (default: 1)')
    parser.add_argument('--log-interval', type=int, default=10, metavar='N',
                        help='how many batches to wait before logging training status')
    parser.add_argument('--save-model', action='store_true', default=False,
                        help='For Saving the current Model')


    # 读取命令行参数
    args = parser.parse_args()
    use_cuda = not args.no_cuda and torch.cuda.is_available()


    torch.manual_seed(args.seed)


    device = torch.device("cuda" if use_cuda else "cpu")


    train_kwargs = {'batch_size': args.batch_size}
    test_kwargs = {'batch_size': args.test_batch_size}
    if use_cuda:
        cuda_kwargs = {'num_workers': 1,
                       'pin_memory': True,
                       'shuffle': True}
        train_kwargs.update(cuda_kwargs)
        test_kwargs.update(cuda_kwargs)


    transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.1307,), (0.3081,))
        ])
    dataset1 = datasets.MNIST('../data', train=True, download=True,
                       transform=transform)
    dataset2 = datasets.MNIST('../data', train=False,
                       transform=transform)
    train_loader = torch.utils.data.DataLoader(dataset1, **train_kwargs)
    test_loader = torch.utils.data.DataLoader(dataset2, **test_kwargs)


    model = Net().to(device)
    optimizer = optim.Adadelta(model.parameters(), lr=args.lr)


    scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma)
    for epoch in range(1, args.epochs + 1):
        train(args, model, device, train_loader, optimizer, epoch)
        test(model, device, test_loader)
        scheduler.step()


    if args.save_model:
        torch.save(model.state_dict(), "mnist_cnn.pt")

06

模型结果

0e9e581901e4e968bbed83dd68f021af.png


07

摸鱼建议

摸鱼也是最近接触PyTorch这个框架,在学习过程中遇到了一些问题,也总结了一些经验。下面是摸鱼遇到的一些问题以及解决方式

Q1:为什么网络的结构是这样定义的?有什么理由吗?

A1:其实刚开始摸鱼也不清楚为什么网络要这样设计,后来在Andrew Ng的课上,老师提起过一嘴,说这个没有什么特别的原因,如果非要说一个原因的话那就是它在实验上的表现很好。所以我们在学习的过程中,可以借鉴那些经典的网络结构,以此为基础改进来形成我们自己的网络架构。同样网络中的参数也是一般采用设计者给出的会比较好。

Q2:transform,DataLoader等等的到底是干嘛的?在好多地方看到过但还是比较模糊

A2:确实,在看官方文档的时候,经常看到这两段代码。相信看完本文应该就可以解决这个问题了,至于要如何解决类似的问题,我的一个建议是了解数据的源格式以及你想要的的目的格式。其实transform不难理解,就是进行一个数据格式的转换,但是如果不了解数据的源格式,可能对这块就会比较模糊。

下载1:OpenCV-Contrib扩展模块中文版教程

在「小白学视觉」公众号后台回复:扩展模块中文教程即可下载全网第一份OpenCV扩展模块教程中文版,涵盖扩展模块安装、SFM算法、立体视觉、目标跟踪、生物视觉、超分辨率处理等二十多章内容。

下载2:Python视觉实战项目52讲

在「小白学视觉」公众号后台回复:Python视觉实战项目即可下载包括图像分割、口罩检测、车道线检测、车辆计数、添加眼线、车牌识别、字符识别、情绪检测、文本内容提取、面部识别等31个视觉实战项目,助力快速学校计算机视觉。

下载3:OpenCV实战项目20讲

在「小白学视觉」公众号后台回复:OpenCV实战项目20讲即可下载含有20个基于OpenCV实现20个实战项目,实现OpenCV学习进阶。

交流群

欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器、自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN、算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~

9d36e0da497382b149781b08fdb41136.png

5979c57f92b599882738cbc825035b38.png

  • 1
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值