招生信息 | 香港科技大学(广州)丁宁宁教授实验室博士招生

点击上方“小白学视觉”,选择加"星标"或“置顶

重磅干货,第一时间送达
香港科技大学(广州)丁宁宁教授实验室博士招生

香港科技大学(广州)数据科学与分析学域的丁宁宁教授实验室,现正火热招募对人工智能、网络系统、网络经济学等领域有强烈兴趣的博士生、博士后和研究助理。

导师介绍

c9d8aa49d6b4577992d448b28dff29be.png

丁宁宁教授于2024年8月加入香港科技大学(广州),担任助理教授及博士生导师。她在美国西北大学电子与计算机工程系完成博士后研究,并在香港中文大学信息工程系获得博士学位。丁教授的研究成果已发表在IEEE JSAC、IEEE TMC、IEEE INFOCOM、ACM MobiHoc、ACM SIGMETRICS等国际顶级期刊和会议上,其成果应用于华为等知名企业。

研究方向

丁宁宁教授的研究方向包括但不限于:

  • 人工智能:机器遗忘学习、联邦学习、编码机器学习

  • 网络系统:物联网、共享平台

  • 网络经济:数据交易、激励机制设计

代表作

  1. J. Cheng, N. Ding, J. C.S. Lui, and J. Huang, "Continuous Query-based Data Trading," ACM SIGMETRICS, 2024.

  2. N. Ding, E. Wei, and R. Berry, "Strategic Data Revocation in Federated Unlearning," IEEE International Conference on Computer Communications (INFOCOM), 2024.

  3. N. Ding, Z. Sun, E. Wei, and R. Berry, "Incentive Mechanism Design for Federated Learning and Unlearning," ACM International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing (MobiHoc), 2023.

  4. N. Ding, L. Gao, and J. Huang, "Joint Participation Incentive and Network Pricing Design for Federated Learning," IEEE International Conference on Computer Communications (INFOCOM), 2023.

  5. N. Ding, L. Gao, and J. Huang, "Optimal Pricing Design for Coordinated and Uncoordinated IoT Networks," IEEE Transactions on Mobile Computing (TMC), accepted, 2022.

招生要求

我们寻找的候选人应具备以下条件:

  1. 对人工智能、计算机网络或经济学等领域有强烈研究兴趣和自驱力。

  2. 在国内外知名大学(985或同等)计算机、电子信息、数学、控制、运筹学等专业取得学士或硕士学位。

  3. 具备较强的数学和编程能力。

  4. 良好的英文口头和书面表达能力(入学需取得雅思6.5或托福80)。

  5. 申请博士后的候选人需在国际一流期刊和会议上发表过多篇第一作者论文。

薪酬福利

  • 所有录取的博士生均保证全额奖学金18万人民币/年(学费4万人民币/年,学制4年)。

  • 为博士后和研究助理提供具有国际竞争力的薪资。

  • 提供优异的科研环境和系统的科研训练,尊重学生兴趣,倡导高质量、高效率的研究和交流。

  • 香港科技大学(广州)的博士毕业生获得香港科技大学颁发的学位证书,可经教育部留学服务中心进行境外学位认证。

  • 支持完成课程要求的学生赴香港清水湾校区交流一学期,可选择感兴趣的港科大资深教授作为第二导师进行联合指导。

  • 高年级学生可推荐至海内外知名院校/企业交流合作。

申请流程

请将个人简历、所有成绩单、专业排名证明(如有)等发送至ningningding54@gmail.com,邮件标题请注明[Year]-[Position]-[Name]-[Affiliation],例如:24Fall-PhD-San Zhang-HKUSTGZ。

联系方式

  • Email: ningningding54@gmail.com

  • 个人主页: Ningning Ding

下载1:OpenCV-Contrib扩展模块中文版教程

在「小白学视觉」公众号后台回复:扩展模块中文教程,即可下载全网第一份OpenCV扩展模块教程中文版,涵盖扩展模块安装、SFM算法、立体视觉、目标跟踪、生物视觉、超分辨率处理等二十多章内容。


下载2:Python视觉实战项目52讲
在「小白学视觉」公众号后台回复:Python视觉实战项目,即可下载包括图像分割、口罩检测、车道线检测、车辆计数、添加眼线、车牌识别、字符识别、情绪检测、文本内容提取、面部识别等31个视觉实战项目,助力快速学校计算机视觉。


下载3:OpenCV实战项目20讲
在「小白学视觉」公众号后台回复:OpenCV实战项目20讲,即可下载含有20个基于OpenCV实现20个实战项目,实现OpenCV学习进阶。


交流群

欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器、自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN、算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~
### 宁宁模型矩阵权值设置或调整方法 关于“宁宁”模型的具体定义并未在现有引用中明确提及。然而,基于提到的相关背景资料以及常见的深度学习框架中的权重初始化与优化策略,可以推测该问题可能涉及 ShuffleNet V2 的设计思路及其背后的权重管理方式。 #### 1. 权重初始化 对于神经网络模型而言,合理的权重初始化能够加速训练过程并提升最终性能。通常采用的方法包括 Xavier 初始化和 He 初始化[^2]。 - **Xavier 初始化**适用于激活函数为 Sigmoid 或 Tanh 的场景,其核心思想是保持每一层输入输出的方差一致。 - **He 初始化**更适合 ReLU 类型的激活函数,通过引入非线性因子来适应梯度传播特性。 ```python import torch.nn.init as init def initialize_weights(model): for m in model.modules(): if isinstance(m, torch.nn.Conv2d): init.kaiming_normal_(m.weight.data) # 使用 He 初始化 elif isinstance(m, torch.nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() ``` #### 2. 学习率调度器配置 为了实现更高效的权重更新,在实际应用中常配合动态调整的学习率机制。例如 StepLR 和 CosineAnnealingLR 是两种广泛使用的方案: ```python from torch.optim.lr_scheduler import StepLR, CosineAnnealingLR optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9) scheduler_step = StepLR(optimizer, step_size=30, gamma=0.1) # 每隔 30 epoch 将学习率乘以 0.1 scheduler_cosine = CosineAnnealingLR(optimizer, T_max=50) # 周期长度设为 50 epochs ``` 上述代码片段展示了如何利用 PyTorch 实现不同形式的学习率衰减逻辑。 #### 3. 正则化技术的应用 为了避免过拟合现象的发生,可以在损失函数中加入 L2 正则项或者直接运用 Dropout 技巧随机丢弃部分节点连接关系。这些措施有助于控制整体参数规模从而间接影响到各层内部具体的数值分布状态。 ```python criterion = nn.CrossEntropyLoss(weight=None, size_average=True, reduce=True) l2_lambda = 0.001 regularization_loss = 0 for param in model.parameters(): regularization_loss += torch.sum(torch.abs(param)) * l2_lambda total_loss = criterion(output, target) + regularization_loss ``` 以上示例体现了通过增加额外惩罚项的方式促进泛化能力增强的效果[^1]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值